Skip to main content
Log in

Pelton turbine: Identifying the optimum number of buckets using CFD

  • Article
  • Published:
Journal of Hydrodynamics Aims and scope Submit manuscript

Abstract

A numerical case study on identifying the optimum number of buckets for a Pelton turbine is presented. Three parameters: number of buckets, bucket radial position and bucket angular position are grouped since they are found to be interrelated. By identifying the best combination of the radial and angular position for each number of buckets it is shown that reduction in the number of buckets beyond the limit suggested by the available literature can improve the efficiency and be beneficial with regard to the manufacturing complexity and cost perspective. The effect of this reduction in the number of buckets was confirmed experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ŽIDONIS A., AGGIDIS G. A. State of the art in numerical modelling of Pelton turbines[J]. Renewable and Sustainable Energy Reviews, 2015, 45: 135–144.

    Article  Google Scholar 

  2. DOBLER W., KNOBLAUCH H. and ZENZ G. Hydraulic investigations investigation of a Y-bifurcator[C]. Proceedings of the first European IAHR Congress. Edinburgh, UK, 2010.

    Google Scholar 

  3. ZHANG Z., CASEY M. Experimental studies of the jet of a Pelton turbine[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2007, 221(8): 1181–1192.

    Google Scholar 

  4. BENZON D., ŽIDONIS, A. and PANAGIOTOPOULOS A. et al. Impulse turbine injector design improvement using computational fluid dynamics[J]. Journal of Fluids Engineering, 2015 137(4): 041106.

    Article  Google Scholar 

  5. BENZON D., ŽIDONIS A. and PANAGIOTOPOULOS A. et al. Numerical investigation of the spear valve configuration on the performance of Pelton and Turgo turbine injectors and runners[J]. Journal of Fluids Engineering, 2015, 137(11): 111201.

    Article  Google Scholar 

  6. PERRIG A., AVELLAN F. and KUENY J. L. et al. Flow in a Pelton turbine bucket: Numerical and experimental investigations[J]. Journal of Fluids Engineering, 2006, 128(4): 350–358.

    Article  Google Scholar 

  7. BINAYA K. C., THAPA B. Pressure distribution at inner surface of selected Pelton bucket for micro hydro[J]. Kathmandu University Journal of Science, Engineering and Technology, 2009, 5(2): 42–50.

    Google Scholar 

  8. ANAGNOSTOPOULOS John S., PAPANTONIS Dimitris E. A fast Lagrangian simulation method for flow analysis and runner design in Pelton turbines[J]. Journal of Hydrodynamics, 2012, 24(6): 930–941.

    Article  Google Scholar 

  9. MATTHIAS H. B., PROST J. and ROSSEGGER C. Investigation of the flow in Pelton turbines and the influence of the casing[J]. International Journal of Rotating Machinery, 1997, 3(4): 239–247.

    Article  Google Scholar 

  10. EISENRING M. MHPG Series: Harnessing water power on a small scale. Volume 9: Micro Pelton turbines[M]. St. Gallen, Switzerland: Swiss Centre for Appropriate Technology, 1991.

    Google Scholar 

  11. PERRIG A. Hydrodynamics of the free surface flow in Pelton turbine buckets[D]. Doctoral Thesis, Lausanne, Switzerland: EJN, 2007.

    Google Scholar 

  12. NECHLEBA M. Hydraulic turbines: Their design and equipment equipement[M]. London, UK: Artia-Prague, 1957.

    Google Scholar 

  13. ŽIDONIS A., PANAGIOTOPOULOS Alexandros and AGGIDIS George A. et al. Parametric optimisation of two Pelton turbine runner designs using CFD[J]. Journal of Hydrodynamics, 2015, 27(3): 403–412.

    Article  Google Scholar 

  14. ATTHANAYAKE I. U. Analytical study on flow through a Pelton turbine bucket using boundary layer theory[J]. International Journal of Engineering and Technology, 2009, 9(9): 241–245.

    Google Scholar 

  15. NASIR B. A. Design of high efficiency Pelton turbine for micro hydropower plant[J]. International Journal of Electrical Engineering and Technology, 2013, 4(1): 171–183.

    Google Scholar 

  16. DRAPER N. R., LIN D. K. J. Small response-surface designs[J]. Technometrics, 1990, 32(2): 187–194.

    Article  MathSciNet  Google Scholar 

  17. VESELÝ J., VARNER M. A case study of upgrading of 62.5 MW Pelton turbine[C]. Uprating and Refurbishing Hydro Power Plants VIII. Prague, Czech Republic, 2001.

    Google Scholar 

  18. PARKINSON E., NEURY C. and GARCIN H. et al. Unsteady analysis of a Pelton runner with flow and mechanical simulations[J]. International Journal on Hydropower and Dams, 2006, 13(2): 101–105.

    Google Scholar 

  19. AGGIDIS G. A., ŽIDONIS A. Hydro turbine prototype testing and generation of performance curves: Fully automated approach[J]. Renewable Energy, 2014, 71(11): 433–441.

    Article  Google Scholar 

  20. WEI X., YANG K. and WANG H. et al. Numerical investigation for one bad-behaved flow in a Pelton turbine[J]. IOP Conference Series: Materials Science and Engineering, 2015, 72(4): 042033.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George A. Aggidis.

Additional information

Biography: Audrius ŽIDONIS (1987-), Male, Ph. D., Research Assistant

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Židonis, A., Aggidis, G.A. Pelton turbine: Identifying the optimum number of buckets using CFD. J Hydrodyn 28, 75–83 (2016). https://doi.org/10.1016/S1001-6058(16)60609-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1001-6058(16)60609-1

Key words

Navigation