Skip to main content
Log in

Mathematical simulation of behavior of carbon and oxygen in RH decarburization

  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

A mathematical model for RH decarburization was developed on the basis of the principle of carbon and oxygen balance. In the simulation, a physical description of the different reaction sites associated with the different mechanisms was considered. Furthermore, the oxygen transfer between top slag and molten steel was also considered. The calculated results of the model were in good agreement with the operation data of the two different plants. The model was applied to analyze the effect of KTB starting time on the RH decarburization rate for ultra-low carbon steel production using slag reforming or LF refining. According to the results, the RH decarburization rate especially the inner site decarburization rate is controlled by the KTB starting time. In actual operation, late KTB starting time should be avoided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

α:

Constant, α=4/3(Do/DC)0.5

aFeO:

Activity of FeO

aFeO(RS):

Activity of FeO calculated by regular model

Ai:

Reaction surface, m2

Ci:

Carbon content in interface, 10−6

CE,i:

Equilibrium carbon content in interface, 10−6

CL, CV:

Carbon content in molten steel in ladle and vessel, 10−6

FeOS:

FeO content in slag related to mass of steel, mass%

g:

Acceleration of gravity, m·s·2

G:

Ar gas fowrate, L·min−1

OE,i:

Equilibrium oxygen content in interface, 10−6

OL, OV:

Oxygen content in molten steel in ladle and vessel, 10−6

HCO:

Depth of CO formation region, m

KC,i:

Transfer coeffcient of carbon, m·s−1

KV:

Volumetric coeffcient for decarburization as CO bubbles, %·(Pa·s)−1

KCO:

Equilibrium constant of interfacial reaction, Pa·%−2

MC, MO:

Molecular mass of C and O, g·mol−1

MFeO:

Molecular mass of FeO, g·mol−1

nCO:

Amount of CO in a bubble, mol

nCO,r:

Amount of CO absorbed by rising Ar bubbles, mol

OLQ:

Equilibrium oxygen content in ladle, 10−6

PCO,i:

Partial pressure in interface, Pa

PV:

Vessel pressure, Pa

Q:

Steel circulation rate, t·min−1

ROSlag:

Oxygen transfer rate between top slag and molten steel, 10−6 s−1

ROKTB:

Supply oxygen rate of KTB, 10−6 s−1

t:

Time, s

T:

Molten steel temperature, K

TOL:

Reaction time constant for FeO reduction, s

WL, WV:

Mass of molten steel in ladle and vessel, t

WSlag:

Mass of top slag, kg

XFeO:

Mole fraction of FeO

ρ:

Density of steel, t·m−3

γFeO:

Activity coeffcient of FeO

τ:

Time required for Ar bubble away from the nozzle to the bath surface, s

ΔCi:

Decarburization amount of Ar bubbles, bath surface and inner site, g·s−1

ΔOi:

Deoxidation amount of Ar bubbles, bath surface and inner site, g·s−1

i:

Decarburization site, i=Ar, Surface, Inner

References

  1. M. Nadif, D. Brachet, in: 1989 Steelmaking Conference Proceedings, Chicago, 1989, pp. 227–233.

  2. K. Yamaguchi, Y. Kishimoto, T. Sakuraya, T. Fujii, M. Aratani, H. Nishikawa, ISIJ Int. 32 (1992) 126–135.

    Article  Google Scholar 

  3. K. Uemura, M. Takahashi, S. Koyama, Kobe Steel Eng. Rep. 41 (1991) No.4, 24–27.

    Google Scholar 

  4. S. Kitamura, M. Yano, K. Harashima, N. Tsutsumi, Tetsu-to-Hagané 80 (1994) No.3, 213–218.

    Article  Google Scholar 

  5. M. Takahashi, H. Matsumoto, T. Saito, ISIJ Int. 35 (1995) 1452–1458.

    Article  Google Scholar 

  6. T. Kitamura, K. Miyamoto, R. Tsujino, S. Mizoguchi, K. Kato, ISIJ Int. 36 (1996) 395–401.

    Article  Google Scholar 

  7. H. Saint-Raymond, D. Huin, F. Stouvenot, Mater. Trans. JIM 41 (2000) No.1, 17–21.

    Article  Google Scholar 

  8. J. H. Wei, N. W. Yu, Steel Res. Int. 73 (2002) No.4, 135–142.

    Article  Google Scholar 

  9. Y. G. Park, K. W. Yi, ISIJ Int. 43 (2003) 1403–1409.

    Article  Google Scholar 

  10. M. Y. Zhu, Y. L. Wu, C. W. Du, Z. Z. Huang, J. Iron Steel Res. Int. 12 (2005) No.2, 20–24.

    Google Scholar 

  11. J. M. Zhang, L. Liu, X. Y. Zhao, S. W. Lei, Q. P. Dong, ISIJ Int. 54 (2014) 1560–1568.

    Article  Google Scholar 

  12. S. Y. Kitamura, H. Aoki, K. I. Miyamoto, H. Furuta, K. Yamashita, K. Yonezawa, ISIJ Int. 40 (2000) 455–459.

    Article  Google Scholar 

  13. B. Kleimt, S. Kohle, H. J. Ponten, W. Matissik, D. Schewe, Ironmak. Steelmak. 20 (1993) 390–395.

    Google Scholar 

  14. B. Y. Shiro, ISIJ Int. 33 (1993) 2–11.

    Article  Google Scholar 

  15. S. H. Kim, B. Song, Metall. Mater. Trans. B 33 (1999) 435–442.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng-huan Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Ph., Wu, Qj., Hu, Wh. et al. Mathematical simulation of behavior of carbon and oxygen in RH decarburization. J. Iron Steel Res. Int. 22 (Suppl 1), 63–67 (2015). https://doi.org/10.1016/S1006-706X(15)30140-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1006-706X(15)30140-0

Key words

Navigation