Skip to main content
Log in

Bio-Imitation of Mexican Migration Routes to the USA with Slime Mould on 3D Terrains

  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

Plasmodium of Physarum polycephalum (P. polycephalum) is a large single cell visible by an unaided eye. It shows sophisticated behavioural traits in foraging for nutrients and developing an optimal transport network of protoplasmic tubes spanning sources of nutrients. When placed in an environment with distributed sources of nutrients the cell ‘computes’ an optimal graph spanning the nutrients by growing a network of protoplasmic tubes. P. polycephalum imitates development of man-made transport networks of a country when configuration of nutrients represents major urban areas. We employed this feature of the slime mould to imitate mexican migration to USA. The Mexican migration to USA is the World’s largest migration system. We bio-physically imitated the migration using slime mould P. polycephalum. In laboratory experiments with 3D Nylon terrains of USA we imitated development of migratory routes from Mexico-USA border to ten urban areas with high concentration of Mexican migrants. From results of laboratory experiments we extracted topologies of migratory routes, and highlighted a role of elevations in shaping the human movement networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Calude C S, Casti J, Dinneen M. Unconventional Models of Computation, Springer-Verlag, Singapore, 1998.

    MATH  Google Scholar 

  2. Calude C S, Dinneen M J, Perez-Jimenez M J, Paun G, Rozenberg G. Unconventional Computation, Springer, Heidelberg, Germany, 2005.

    Book  MATH  Google Scholar 

  3. Fuerstman M J, Deschatelets P, Kane R, Schwartz A, Kenis P J A, Deutsch J M, Whitesides G M. Solving mazes using microfluidic networks. Langmuir, 2003, 19, 4714–4722.

    Article  Google Scholar 

  4. Stojanovic M N, Mitchell Y E, Stefanovic D. Deoxyri-bozyme-based logic gates. Journal of the American Chemical Society, 2002, 124, 3555–355.

    Article  Google Scholar 

  5. Lederman H, Macdonald J, Stefanovic D, Stojanovic M N. Deoxyribozyme-based three-input logic gates and construction of a molecular full adder. Biochemistry, 2006, 45, 1194–1199.

    Article  Google Scholar 

  6. Adamatzky A, De Lacy Costello B, Asai T. Reaction-Diffusion Computers, Elsevier, Amsterdam, Holand, 2005.

    Google Scholar 

  7. Nakagaki T, Yamada H, Toth A. Path finding by tube morphogenesis in an amoeboid organism. Biophysical Chemistry, 2001, 92, 47–52.

    Article  Google Scholar 

  8. Tsuda S, Aono M, Gunji Y P. Robust and emergent Physarum logical-computing. BioSystems, 2004, 73, 45–55.

    Article  Google Scholar 

  9. Adamatzky A. Physarum Machines: Computers from Slime Mould, World Scientific, Singapore, 2010.

    Book  Google Scholar 

  10. Miranda E, Adamatzky A, Jones J. Sounds synthesis with slime mould of Physarum Polycephalum. Journal of Bionic Engineering, 2011, 8, 107–113.

    Article  Google Scholar 

  11. Adamatzky A, Jones J. Towards Physarum robots: computing and manipulating on water surface. Journal of Bionic Engineering, 2008, 5, 348–357.

    Article  Google Scholar 

  12. Stephenson S L, Stempen H. Myxomycetes: A Handbook of Slime Molds, Timber Press, Portland, USA, 2000.

    Google Scholar 

  13. Adamatzky A. Developing proximity graphs by Physarum Polycephalum: Does the plasmodium follow Toussaint hi-erarchy? Parallel Processing Letters, 2008, 19, 105–127.

    Article  Google Scholar 

  14. Shirakawa T, Adamatzky A, Gunji Y P, Miyake Y. On simultaneous construction of Voronoi diagram and Delaunay triangulation by Physarum polycephalum. International Journal of Bifurcation and Chaos, 2009, 9, 3109–3117.

    Article  Google Scholar 

  15. Shirakawa T, Gunji Y P, Miyake Y. An associative learning experiment using the plasmodium of Physarum polycepha-lum. Nano Communication Networks, 2011, 2, 99–105.

    Article  Google Scholar 

  16. Adamatzky A. Advances in Physarum machines gates, hulls, mazes and routing with slime mould. In: De Bosschere K, D’Hollander E H, Joubert G R, Padua D, Peters F, Sawyer M (Eds.) Applications, Tools and Techniques on the Road to Exascale Computing, IOS Press, Amsterdam, Netherlands, 2012.

    Google Scholar 

  17. Schumann A, Adamatzky A. Physarum spatial logic. New Mathematics and Natural Computation, 2011, 7, 483–498.

    Article  MathSciNet  MATH  Google Scholar 

  18. Jones J. Influences on the formation and evolution of Physarum polycephalum inspired emergent transport networks. Natural Computing, 2011, 10, 1345–1369.

    Article  MathSciNet  Google Scholar 

  19. Becker M. Design of fault tolerant networks with agent-based simulation of Physarum polycephalum. Proceedings of the IEEE Congress on Evolutionary Computation (CEC), New Orleans, USA, 2011, 285–291.

    Google Scholar 

  20. Adamatzky A. Bio-Evaluation of World Transport Networks, World Scientific, Singapore, 2012.

    Book  Google Scholar 

  21. Massey D S, Arango J, Hugo G, Kouaouchi A, Pellegrino A, Taylor J E. Worlds in Motion: Understanding International Migration at the End of the Millennium. Oxford: Clarendon Press, London, UK, 2005.

    Google Scholar 

  22. Passel J S. The Size and Characteristics of the Unauthorized Migrant Population in the U.S.: Estimates Based on the March 2005 Current Population Survey, Pew Hispanic Center, Washington DC, USA, 2006.

    Google Scholar 

  23. Wilson T D. The culture of Mexican migration. Critique of Anthropology, 2010, 30, 399–420.

    Article  Google Scholar 

  24. Massey D S, Espinosa K E. What’s driving Mexico-US migration? A theoretical empirical and policy analysis. American Journal of Sociology, 1997, 102, 939–999.

    Article  Google Scholar 

  25. Massey D S, Zenteno R M. The dynamics of mass migration. Proceedings of the National Academy of Sciences, 1999, 96, 5328–5335.

    Article  Google Scholar 

  26. Graves P E, Knapp T A. A theory of international migration flows: United States immigration from Mexico. Review of Regional Studies, 1984, 14, W1–W7.

    Google Scholar 

  27. Colussi A. An estimable model of illegal Mexican immigration, [2004-01-01], http://repository.upenn.edu/dissertations/AAI3137997

    Google Scholar 

  28. Rivero-Fuentes E. A comparison of three models of internal migration in Mexico. International Union for the Scientific Study of Population XXV International Population Conference, Tours, France, 2005.

    Google Scholar 

  29. Hanson G H, McIntosh C. The Demography of Mexican Migration to the US. School of International Relations and Pacific Studied, University of California, San Diego, USA.

  30. Chang S H. The effect of migrant networks on Mexican migration, [2009-05-31], https://editorialexpress.com/cgi-bin/conference/download.cgi?db_name=NASM2009&paper_id=654

    Google Scholar 

  31. Eichler S. How Many Illegal Mexican Immigrants Enter the United States, Where, and Why? Forum for Research and Empirical International Trade WP 177, 2010. http://www.freit.org/WorkingPapers/Papers/Immigration/FREIT177.pdf

    Google Scholar 

  32. Thom K. Repeated Circular Migration: Theory and Evidence from Undocumented Migrants. New York University, New York, USA, 2007.

    Google Scholar 

  33. Block I, Briegleb W, Wohlfarth-Bottermann K E. Gravisen-sitivity of the acellular slime mold Physarum polycephalum demonstrated on the fast-rotating clinostat. European Journal of Cell Biology, 1986, 41, 44–50.

    Google Scholar 

  34. Block I, Briegleb W. Potential sites for the perception of gravity in the acellular slime mold Physarum polycephalum. Advances in Space Research, 1989, 9, 75–78.

    Article  Google Scholar 

  35. La migracon a Estados Unidos. Maps y Estadisticas. Instituto Politecnico Nacional. Accessed August, 2012. http://oncetv-ipn.net/migrantes/mapas/#

    Google Scholar 

  36. State Proportion of the Mexican Immigrant Population in the United States and Metropolitan Areas with 250,000 Mexican Immigrants or More, 2010. 2001-2012 Migration Policy Institute. http://www.migrationinformation.org/datahub/maps.cfm

    Google Scholar 

  37. Conway D, Cohen J H. Consequences of migration and remittances for Mexican transnational communities. Eco-nomical Geograph, 1998, 74, 26–44.

    Article  Google Scholar 

  38. Block I, Rabien H, Ivanova K. Involvement of the second messenger cAMP in the gravity-signal transduction in Phy-sarum. Advances in Space Research, 1998, 21, 1311–1314.

    Article  Google Scholar 

  39. Pries L. The disruption of social and geographic space: Mexican-US migration and the emergence of transnational social spaces. International Sociology, 2001, 16, 55–74.

    Article  Google Scholar 

  40. Sandersen M, Utz R. The globalization of economic production and international migration. An empirical analysis of undocumented Mexican migration to the United States. International Journal of Comparative Sociology, 2009, 50, 137–154.

    Article  Google Scholar 

  41. Ge S S, Xuecheng Lai, Mamun A A. Boundary following and globally convergent path planning using instant goals. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2005, 35, 240–254.

    Article  Google Scholar 

  42. Willms A R, Yang S X. An efficient dynamic system for real-time robot-path planning. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2006, 36, 755–766.

    Article  Google Scholar 

  43. Willms A R, Yang S X. Real-time robot path planning via a distance-propagating dynamic system with obstacle clear-ance. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2008, 38, 884–893.

    Article  Google Scholar 

  44. Kurz A. Constructing maps for mobile robot navigation based on ultrasonic range data. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 1996, 26, 233–242.

    Article  Google Scholar 

  45. Araujo R, de Almeida A T. Learning sensor-based navigation of a real mobile robot in unknown worlds. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 1999, 29, 164–178.

    Article  Google Scholar 

  46. Ye C. Navigating a mobile robot by a traversability field histogram. IEEE Transactions on Systems, Man, and Cy-bernetics, Part B: Cybernetics, 2007, 37, 361–372.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Adamatzky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adamatzky, A., Martinez, G.J. Bio-Imitation of Mexican Migration Routes to the USA with Slime Mould on 3D Terrains. J Bionic Eng 10, 242–250 (2013). https://doi.org/10.1016/S1672-6529(13)60220-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1672-6529(13)60220-6

Keywords

Navigation