Skip to main content
Log in

Interfacial effects of superhydrophobic plant surfaces: A review

  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

Nature is a huge gallery of art involving nearly perfect structures and properties over the millions of years of development. Many plants and animals show water-repellent properties with fine micro-structures, such as lotus leaf, water skipper and wings of butterfly. Inspired by these special surfaces, the artificial superhydrophobic surfaces have attracted wide attention in both basic research and industrial applications. The wetting properties of superhydrophobic surfaces in nature are affected by the chemical compositions and the surface topographies. So it is possible to realize the biomimetic superhydrophobic surfaces by tuning their surface roughness and surface free energy correspondingly. This review briefly introduces the physical-chemical basis of superhydrophobic plant surfaces in nature to explain how the superhydrophobicity of plant surfaces can be applied to different biomimetic functional materials with relevance to technological applications. Then, three classical effects of natural surfaces are classified: lotus effect, salvinia effect, and petal effect, and the promising strategies to fabricate biomimetic superhydrophobic materials are highlighted. Finally, the prospects and challenges of this area in the future are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Strukova G K, Strukov E Y, Postnova G. V, Veshchunov I S. Mesoscopic models of plants composed of metallic nanowires. Journal of Bionic Engineering, 2013, 10, 368–376.

    Article  Google Scholar 

  2. Zhang Y B, Chen Y, Shi L, Li J, Guo Z G. Recent progress of double-structural and functional materials with special wettability. Journal of Materials Chemistry, 2012, 22, 799–815.

    Article  Google Scholar 

  3. Chen Y, Zhang Y B, Shi L, Li J, Xin Y, Yang T T, Guo Z. G. Transparent superhydrophobic/superhydrophilic coatings for self-cleaning and anti-fogging.Appl. Physical Letter, 2012, 101, 033701–033703.

    Google Scholar 

  4. Guo Z G., Zhou F, Hao J C, Liu W M. Biomimic from the superhydrophobic plant leaves in nature: Binary structure and unitary structure. Journal of the American Chemical Society, 2005, 127, 15670–15671.

    Article  Google Scholar 

  5. Wang B, Zhang Y B, Shi L. Li J, Guo Z G. Advances in the theory of superhydrophobic surfaces. Journal of Materials Chemistry, 2012, 22, 20112–20127.

    Article  Google Scholar 

  6. Xia F, Jiang L. Bio-inspired, smart, multiscale interfacial materials. Advanced materials, 2008, 20, 2842–2858.

    Article  Google Scholar 

  7. FornoI W, Harley K L S. The occurrence of Salvinia molesta in Brazil. Aquatic Botany, 1979, 6, 185–187.

    Article  Google Scholar 

  8. Young T. An essay on the cohesion of fluids. Philosophical Transactions of the Royal Society, 1805, 95, 65–87.

    Article  Google Scholar 

  9. Wenzel R N. Resistance of solid surfaces to wetting by water. Industrial & Engineering Chemistry, 1936, 28, 988–994.

    Article  Google Scholar 

  10. Cassie A B D, Baxter S. Wettability of porous surfaces. Transactions of the Faraday Society, 1944, 40, 546–551.

    Article  Google Scholar 

  11. Xu J, Guo Z G, Biomimetic photonic materials with tunable structural colors. Journal of Colloid and Interface Science, 2013, 406, 1–17.

    Article  Google Scholar 

  12. Wang H, Guo Z G. Design of underwater superoleophobic TiO2 coatings with additional photo-induced self-cleaning properties by one-step route bio-inspired from fish scales. Applied Physics Letters, 2014, 104, 183703–183704.

    Article  Google Scholar 

  13. Lau K K, Bico J, Teo K B K, Chhowalla M, Amaratung G A J, Milne W I, McKinley Gleason K K. Superhydrophobic carbon nanotube forests. Nano Letters, 2003, 3, 1701–1705.

    Article  Google Scholar 

  14. Shirtcliffe N J, McHale G, Newton M I, Chabrol G, Perry C C. Dual-scale roughness produces unusually water-repellent surfaces. Advanced Materials, 2004, 16, 1929–1932.

    Article  Google Scholar 

  15. Han J T, Xu X R, Cho K. W. Diverse access to artificial superhydrophobic surfaces using block copolymers. Langmuir, 2005, 21, 6662–6665.

    Article  Google Scholar 

  16. Guo Z G, Zhou Liu W M. Preparation of biomimetic superhydrophobic silica film by sol-gel technique. Acta Chimica Sinica, 2006, 64, 761–766.

    Google Scholar 

  17. Shirtcliffe N J, McHale G, Newton M I, Perry C C, Roach P. Porous materials show superhydrophobic to superhydrophilic switching. Chemical Communications, 2005, 3135–3137.

    Google Scholar 

  18. Guo Z G, Fang J, Hao J C, Liang Y M, Liu W M. A novel approach to stable superhydrophobic surfaces. Chemical Physics and Physical Chemistry, 2006, 7, 1674–1677.

    Article  Google Scholar 

  19. Furstner R, Barthlott W, Neinhuis C, Walzel P. Wetting and self-cleaning properties of artificial superhydrophobic surfaces. Langmuir, 2005, 21, 956–961.

    Article  Google Scholar 

  20. Guo Z G, Liu W M, Su B L. Superhydrophobic surfaces: From natural to biomimetic to functional. Journal of Colloid and Interface Science, 2011, 353, 335–355.

    Article  Google Scholar 

  21. Huang L, Lau S P, Yang H Y, Leong E S P, Yu S F, Prawer S. Stable superhydrophobic surface via carbon nanotubes coated with a ZnO thin film. Journal of Physical Chemistry B, 2005, 109, 7746–7748.

    Article  Google Scholar 

  22. Zhu H, Guo Z G, Liu W M, Adhesion behaviors on superhydrophobic surfaces. Chemical Communications, 2014, 50, 3900–3913.

    Article  Google Scholar 

  23. Koch K, Bohn H F, Barthlott W. Hierarchically sculptured plant surfaces and superhydrophobicity. Langmuir, 2009, 25, 14116–14120.

    Article  Google Scholar 

  24. Yuan Z, Ye H, Li S M. Bionic leaf simulating the thermal effect of natural leaf transpiration. Journal of Bionic Engineering, 2014, 11, 90–97.

    Article  Google Scholar 

  25. Sun T L, Feng L, Gao X F, Jiang L. Bioinspired surfaces with special wettability. Accounts of Chemical Research, 2005, 38, 644–652.

    Article  Google Scholar 

  26. Barthlott W, Ehler N. Raster-Elektronenmikroskopie der Epidermis-Oberflächen von Spermatophyten. Tropische und Subtropische Pflanzenwelt; Franz Steiner Verlag, GmbH: Wiesbaden, Germany, 1977.

    Google Scholar 

  27. Qi X, Song W, Mao Z, Gao W R, Cong Q. Fabrication of a bionic needle with both superhydrophobic and antibacterial properties. Journal of Bionic Engineering, 2013, 10, 377–382.

    Article  Google Scholar 

  28. Miwa M, Nakajima A, Fujishima A, Hashimoto K, Watanabe T. Effects of surface structure on the hydrophobicity and sliding behavior of water droplets. Langmuir, 2000, 16, 5754–5760.

    Article  Google Scholar 

  29. Li J, Du F, Liu X L, Jiang Z H, Ren L Q. Superhydrophobicity of bionic alumina surfaces fabricated by hard anodizing. Journal of Bionic Engineering, 2011, 8, 369–374.

    Article  Google Scholar 

  30. Jeffree C E. The Fine Structure of the Plant Cuticle. In Biology of the Plant Cuticle. In: Riederer M and Müller C (eds), Blackwell, Oxford, UK, 2006, 11–125.

  31. Bargel H, Koch K, Cerman Z, Neinhuis C. Evans Review No. 3: Structure-function relationships of the plant cuticle and cuticular waxes-a smart material? Functional Plant Biology, 2006, 3, 893–910.

    Article  Google Scholar 

  32. Riederer M, Schreiber L. Protecting against water loss: Analysis of the barrier properties of plant cuticles. Journal of Experimental Botany, 2001, 52, 2023–2032.

    Article  Google Scholar 

  33. Kerstiens G, Cuticular water permeability and its physiological significance. Journal of Experimental Botany, 1996, 47, 1813–1832.

    Article  Google Scholar 

  34. Koch K, Bhushan B, Barthlott W, Multifunctional surface structures of plants: An inspiration for biomimetics. Progress in Materials Science, 2009, 54, 137–178.

    Article  Google Scholar 

  35. Neinhuis C, Barthlott W. Characterization and distribution of water-repellent, self-cleaning plant surfaces. Annals of Botany, 1997, 79, 667–677.

    Article  Google Scholar 

  36. Barthlott W, Neinhuis C, Cutler D, Ditsch F, Meusel I, Theisen I. Classification and terminology of plant epicuticular waxes. Botanical Joumal of the Linnean Sociey, 1998, 126, 237–260.

    Article  Google Scholar 

  37. Holmes M G, Keiller D R. Effects of pubescence and waxes on the reflectance of leaves in the ultraviolet and photosynthetic wavebands: A comparison of a range of species. Plant, Cell and Environment, 2002, 25, 85–93.

    Article  Google Scholar 

  38. Petracek P D, Bukovac M J. Rheological properties of enzymatically isolated tomato fruit cuticle. Plant Physiology, 1995, 109, 675–679.

    Article  Google Scholar 

  39. Fürstner R, Barthlott W, Neinhuis C, Walzel P. Wetting and self-cleaning properties of artificial superhydrophobic surfaces. Langmuir, 2005, 21, 956–961.

    Article  Google Scholar 

  40. Patankar N A. Mimicking the lotus effect: influence of double roughness structures and slender pillars. Langmuir, 2004, 20, 8209–8213.

    Article  Google Scholar 

  41. Bhushan B, Jung Y C. Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction. Progress in Materials Science. 2011, 56, 1–108.

    Article  Google Scholar 

  42. Gorb E, Haas K, Henrich A, Enders S, Barbakadze N, Gorb S. Composite structure of the crystalline epicuticular wax layer of the slippery zone in the pitchers of the carnivorous plant Nepenthes alata and its effect on insect attachment. Journal of Experimental Biology, 2005, 208, 4651–4662.

    Article  Google Scholar 

  43. Bohn H F, Federle W. Insect aquaplaning: Nepenthes pitcher plants capture prey with the peristome, a fully wettable water-lubricated anisotropic surface. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 14138–14143.

    Article  Google Scholar 

  44. Reicosky D A, Hanover J W. Physiological effects of surface waxes: I. Light reflectance for glaucous and nonglaucous Picea pungens. Plant Physiology, 1978, 62, 101–104.

    Article  Google Scholar 

  45. Riedel M, Eichner A, Jetter R. Slippery surfaces of carnivorous plants: Composition of epicuticular wax crystals in Nepenthes alata Blanco pitchers. Planta, 2003, 218, 87–97.

    Article  Google Scholar 

  46. Gniwotta F, Vogg G, Gartmann V, Carver T L W, Riederer M, Jetter R. What do microbes encounter at the plant surface? Chemical composition of pea leaf cuticular waxes. Plant Physiology, 2005, 139, 519–530.

    Article  Google Scholar 

  47. Holloway P J, Surface factors affecting the wetting of leaves. Pesticide Science, 1970, 1, 156–163.

    Article  Google Scholar 

  48. Barthlott W, Theisen I. Epicuticular wax ultrastructure and classification of Ranunculiflorae. Systematics and Evolution of the Ranunculiflorae, 1995, 9, 39–45.

    Article  Google Scholar 

  49. Jetter R, Schäffer S, Riederer M. Plant, Leaf cuticular waxes are arranged in chemically and mechanically distinct layers: Evidence from Prunus laurocerasus L. Cell and Environment, 2000, 23, 619–628.

    Article  Google Scholar 

  50. Kunst L, Samuels A L. Biosynthesis and secretion of plant cuticular wax. Progress Lipid Research. 2003, 42, 51–80.

    Article  Google Scholar 

  51. Bhushan B, Jung Y C, Koch K, Micro-, nano- and hierarchical structures for superhydrophobicity, self-cleaning and low adhesion. Philosophical Transactions of the Royal Society, 2009, 367, 1631–1672.

    Article  Google Scholar 

  52. Oros D, Simoneit B. Identification and emission factors of molecular tracers in organic aerosols from biomass burning Part 1. Temperate climate conifers. Applied Geochemistry, 2001, 16, 1513–1544.

    Article  Google Scholar 

  53. Choi Y H, Kim J, Noh M J, Park E M, Yoo K P. Extraction of epicuticular wax and nonacosan-10-OL from Ephedra herb utilizing supercritical carbon dioxide. Korean Journal of Chemical Engineering, 1996, 13, 216–219.

    Article  Google Scholar 

  54. Riedel M, Eichner A, Meimberg H, Jetter R. Chemical composition of epicuticular wax crystals on the slippery zone in pitchers of five Nepenthes species and hybrids. Planta, 2007, 225, 1517–1534.

    Article  Google Scholar 

  55. Wissemann V, Riedel M, Riederer M. Matroclinal inheritance of cuticular waxes in reciprocal hybrids of Rosa species, sect. Caninae (Rosaceae). Plant Systematics and Evolution, 2007, 263, 181–190.

    Article  Google Scholar 

  56. Buschhaus C, Herz H, Jetter R. Chemical composition of the epicuticular and intracuticular wax layers on adaxial sides of Rosa canina leaves. Annals of Botany, 2007, 100, 1557–1564.

    Article  Google Scholar 

  57. Taylor P. The wetting of leaf surfaces. Current Opinion in Colloid & Interface Science, 2011, 16, 326–334.

    Article  Google Scholar 

  58. Chachalis D, Reddy K N, Elmore C D. Characterization of leaf surface, wax composition, and control of redvine and trumpetcreeper with glyphosate. Weed Science, 2001, 49, 156–163.

    Article  Google Scholar 

  59. Barthlott W, Neinhuis C. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta, 1997, 202, 1–8.

    Article  Google Scholar 

  60. Mongeot F B de, Chiappe D, Gagliardi F, Toma A, Felici R, Garibbo A, Boragno C. Wetting process in superhydrophobic disordered surfaces. Soft Matter, 2010, 6, 1409–1412.

    Article  Google Scholar 

  61. Jonas U, Vamvakaki M. From Fluidic self-assembly to hierarchical structures-superhydrophobic flexible interfaces. Angewandte Chemie International Edition, 2010, 49, 4542–4543.

    Article  Google Scholar 

  62. Su Y W, Ji B H, Zhang K, Gao H J, Huang Y G, Wang K H, Nano to micro structural hierarchy is crucial for stable superhydrophobic and water-repellent surfaces. Langmuir, 2010, 26, 4984–4989.

    Article  Google Scholar 

  63. Bhushan B. Nanotribology and nanomechanics. Wear, 2005, 259, 1507–1531.

    Article  Google Scholar 

  64. Zhang X, Shi F, Niu J, Jiang Y G, Wang Z Q. Superhydrophobic surfaces: From structural control to functional application. Journal of Materials Chemistry, 2008, 18, 621–633.

    Article  Google Scholar 

  65. YanY Y, Gao N, Barthlott W. Mimicking natural superhydrophobic surfaces and grasping the wetting process: A review on recent progress in preparing superhydrophobic surfaces. Advances in Colloid and Interface Science, 2011, 169, 80–105.

    Article  Google Scholar 

  66. Zhang H, Li W, Cui D. Y, Hu Z W, Xu L. Design of lotus-simulating surfaces: Thermodynamic analysis based on a new methodology. Colloids and Surfaces A: Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 413, 314–327.

    Google Scholar 

  67. Bhushan B, Nosonovsky M. The rose petal effect and the modes of superhydrophobicity. Philosophical Transactions of the Royal Society A, 2010, 368, 4713–4728.

    Article  MathSciNet  MATH  Google Scholar 

  68. Roach P, Shirtcliffe N J, Newton M. I. Progess in superhydrophobic surface development. Soft Matter, 2008, 4, 224–240.

    Article  Google Scholar 

  69. Bhushan B, Jung Y C, Koch K. Hierarchically sculptured plant surfaces and superhydrophobicity. Langmuir, 2009, 25, 3240–3248.

    Article  Google Scholar 

  70. Kim H, Kim M H, Kim J. Wettability of dual-scaled surfaces fabricated by the combination of a conventional silicon wet-etching and a ZnO solution method. Journal of Micromechanics and Microengineering, 2009, 19, 1–7.

    Google Scholar 

  71. Jeong H E, Kwak M K, Park C I, Suh K. Y. Wettability of nanoengineered dual-roughness surfaces fabricated by UV-assisted capillary force lithography. Journal of Colloid and Interface Science, 2009, 339, 202–207.

    Article  Google Scholar 

  72. Geoghegan M, Krausch G. Wetting at polymer surfaces and interfaces. Progress in Polymer Science, 2003, 28, 261–302.

    Article  Google Scholar 

  73. Quéré D. Non-sticking drops. Reports on Progress in Physics, 2005, 68, 2495–2532.

    Article  Google Scholar 

  74. Nosonovsky M, Bhushan B. Biomimetic superhydrophobic surfaces: Multiscale approach. Nano Letters, 2007, 7, 2633–2637.

    Article  Google Scholar 

  75. Quéré D. Surface chemistry: Fakir droplets. Nature Materials, 2002, 1, 14–15.

    Article  Google Scholar 

  76. Marmur A. Wetting on hydrophobic rough surfaces: To be heterogeneous or not to be? Langmuir, 2003, 19, 8343–8348.

    Article  Google Scholar 

  77. Bhushan B, Nosonovsky M, Jung Y C. Towards optimization of patterned superhydrophobic surfaces. Journal of the Royal Society Interface, 2007, 4, 643–648.

    Article  Google Scholar 

  78. Barbieri L, Wagner E, Hoffmann P. Water wetting transition parameters of perfluorinated substrates with periodically distributed flat-top microscale obstacles. Langmuir, 2007, 23, 1723–1734.

    Article  Google Scholar 

  79. Lafuma A, Quéré D. Superhydrophobic states. Nature Materials, 2003, 2, 457–460.

    Article  Google Scholar 

  80. He B, Patankar N A, Lee J. Multiple equilibrium droplet shapes and design criterion for rough hydrophobic surfaces. Langmuir, 2003, 19, 4999–5003.

    Article  Google Scholar 

  81. Jung Y C, Bhushan B. Dynamic effects of bouncing water droplets on superhydrophobic surfaces. Langmuir, 2008, 24, 6262–6269.

    Article  Google Scholar 

  82. Bhushan B, Her E K. Fabrication of superhydrophobic surfaces with high and low adhesion inspired from rose petal. Langmuir, 2010, 26, 8207–8217.

    Article  Google Scholar 

  83. Extrand C W. Model for contact angles and hysteresis on rough and ultraphobic surfaces. Langmuir, 2002, 18, 7991–7999.

    Article  Google Scholar 

  84. Patankar N A. Transition between superhydrophobic states on rough surfaces. Langmuir, 2004, 20, 7097–7102.

    Article  Google Scholar 

  85. Nosonovsky M, Bhushan B. Stochastic model for metastable wetting of roughness-induced superhydrophobic surfaces. Microsystem Technologies, 2006, 12, 231–237.

    Article  Google Scholar 

  86. Nosonovsky M. Multiscale roughness and stability of superhydrophobic biomimetic interfaces. Langmuir, 2007, 23, 3157–3161.

    Article  Google Scholar 

  87. Shibuichi S, Onda T, Satoh N, Tsujii K. Super water-repellent surfaces resulting from fractal structure. Journal of Physics and Chemistry, 1996, 100, 19512–19517.

    Article  Google Scholar 

  88. Feng L, Li S H, Li Y S, Li H J, Zhang L J, Zhai J, Song Y L, Liu B Q, Jiang L, Zhu D B. Superhydrophobic surfaces: From natural to artificial. Advanced Materials, 2002, 14, 1857–1860.

    Article  Google Scholar 

  89. Guo Z G, Liu W M. Biomimic from the superhydrophobic plant leaves in nature: Binary structure and unitary structure. Plant Science, 2007, 172, 1103–1112.

    Article  Google Scholar 

  90. Hsu S H, Woan K, Sigmund W. Biologically inspired hairy structures for superhydrophobicity. Materials Science and Engineering R, 2011, 72, 189–201.

    Article  Google Scholar 

  91. Gowri S, Almeida L, Amorim T, Carneiro N, Souto A P, Esteves M F. Polymer nanocomposites for multifunctional finishing of textiles-a review. Textile Research Journal, 2010, 80, 1290–1306.

    Article  Google Scholar 

  92. Nosonovsky M, Bhushan B. Superhydrophobic surfaces and emerging applications: non-adhesion, energy, green engineering. Current Opinion in Colloid & Interface Science, 2009, 14, 270–280.

    Article  Google Scholar 

  93. Marmur A. Soft contact: Measurement and interpretation of contact angles. Soft Matter, 2006, 2, 12–17.

    Article  Google Scholar 

  94. Marmur A. The lotus effect: Superhydrophobicity and metastability. Langmuir, 2004, 20, 3517–3519.

    Article  Google Scholar 

  95. Nosonovsky M, Bhushan B. Multiscale friction mechanisms and hierarchical surfaces in nano-and bio-tribology. Materials Science and Engineering R, 2007, 58, 162–193.

    Article  Google Scholar 

  96. Bhushan B, Jung Y C. Wetting, adhesion and friction of superhydrophobic and hydrophilic leaves and fabricated micro/nanopatterned surfaces. Journal of Physics: Condensed Matter, 2008, 20, 225010.

    Google Scholar 

  97. Bhushan B, Koch K, Jung Y C, Nanostructures for superhydrophobicity and low adhesion. Soft Matter 2008, 4, 1799–1804.

    Article  Google Scholar 

  98. Sun M H, Luo C X, Xu L P, Ji H, Yuan Q O, Yu D P, Chen Y. Artificial lotus leaf by nanocasting. Langmuir, 2005, 21, 8978–8981.

    Article  Google Scholar 

  99. Solga A, Cerman Z, Striffler B F, Spaeth M, Barthlott W. The dream of staying clean: Lotus and biomimetic surfaces. Bioinspiration & Biomimetics, 2007, 2, 126–134.

    Article  Google Scholar 

  100. Seastedt T R, Hobbs R J, Suding K N. Management of novel ecosystems: Are novel approaches required? Frontiers in Ecology and the Environment, 2008, 6, 547–553.

    Article  Google Scholar 

  101. Ming W, Wu D, Benthem R, With G. Superhydrophobic films from raspberry-like particles. Nano Letters, 2005, 5, 2298–2301.

    Article  Google Scholar 

  102. Höcker H. Plasma treatment of textile fibers. Pure and Applied Chemistry, 2002, 74, 423–427.

    Article  Google Scholar 

  103. Nun E, Oles M, Schleich B. Lotus-effect-surfaces. Macromolecular Symposia, 2002, 187, 677–682.

    Article  Google Scholar 

  104. Baumann M, Sakoske G, Poth L, Tünker G. Learning from the lotus flower-self-cleaning coatings on glass. In: Days GP, (ed). Proceedings of the 8th international glass conference, Tampere, Finland, 2013, 330–333.

    Google Scholar 

  105. Mukherjee S, Kumar S. Adsorptive uptakeof arsenic (V) from water by aquatic fern Salvinia natans. Journal of Water Supply: Research Technology, 2005, 54, 47–53.

    Google Scholar 

  106. Oliver J D.A review of the biology of giant salvinia. Journal of Aquatic Plant Management, 1993, 31, 227–231.

    Google Scholar 

  107. Room P M, Harley K L S, Forno I W, Sands D P. Successful biological control of the floating weed salvinia. Nature, 1981, 294, 78–80.

    Article  Google Scholar 

  108. Barthlott W, Schimmel T, Wiersch S, Koch K, Brede M, Barczewski M, Walheim S, Weis A, Kaltenmaier A, Leder A, Bohn H F. The Salvinia paradox: Superhydrophobic surfaces with hydrophilic pins for air retention under water. Advanced Materials, 2010, 22, 2325–2328.

    Article  Google Scholar 

  109. Bernardino N R, Blickle V, Dietrich S. Wetting of surfaces covered by elastic hairs. Langmuir, 2010, 26, 7233–7241.

    Article  Google Scholar 

  110. Konrad W, Apeltauer C, Frauendiener J, Barthlott W, Roth-Nebelsick A. Applying methods from differential geometry to devise stable and persistent air layers attached to objects immersed in water. Journal of Bionic Engineering, 2009, 6, 350–356.

    Article  Google Scholar 

  111. Genzer J, Efimenko K.Recent developments in superhydrophobic surfaces and their relevance to marine fouling: a review. Biofouling, 2006, 22, 339–360.

    Article  Google Scholar 

  112. Corbett J J, Koehler H W. Updated emissions from ocean shipping. Journal of Geophysical Research, 2003, 108, 4650.

    Article  Google Scholar 

  113. Eyring V, Köhler H W, Aardenne J, Lauer A. Emissions from international shipping: 1. The last 50 years. Journal of Geophysical Research, 2005, 110, 17305.

    Article  Google Scholar 

  114. Tokunaga J, Kumada M, Sugiyama Y, Watanabe N, Chong Y B, Matsubara N. Method of Forming Air Film on Submerged Surface of Submerged Part-Carrying Structure, and Film Structure on Submerged Surface. 1990, WO 0606 940 Al, 1–14.

    Google Scholar 

  115. Fukuda K, Tokunaga J, Nobunaga T, Nakatani T, Iwasaki T, Kunitake Y. Frictional drag reduction with air lubricant over a superwater-repellentsurface. Journal of Marine Science and Technology, 2001, 5, 123–130.

    Article  Google Scholar 

  116. Parente J, Fonseca P, Henriques V, Campos A. Strategies for improving fuel efficiency in the Portuguese trawl fishery. Fisheries Research, 2008, 93, 117–124.

    Article  Google Scholar 

  117. Lee C, Kim C J. Maximizing the giant liquid slip on superhydrophobic microstructures by nanostructuring their sidewalls. Langmuir, 2009, 25, 12812–12818.

    Article  Google Scholar 

  118. Jung Y C, Bhushan B. Biomimetic structures for fluid drag reduction in laminar and turbulent flows. Journal of Physics: Condensed Matter, 2010, 22, 035104.

    Google Scholar 

  119. Otten A, Herminghaus S.How plants keep dry: A physicist’s point of view. Langmuir, 2004, 20, 2405–2408.

    Article  Google Scholar 

  120. Mock U, Förster R, Menz W, Rühe J. Towards ultrahydrophobic surfaces: A biomimetic approach. Journal of Physics: Condensed Matter, 2005, 17, S639–S648.

    Google Scholar 

  121. Cerman Z, Striffler B. F, Barthlott W. Dry in the water: The superhydrophobic water fern Salvinia-a model for biomimetic surfaces. Functional Surfaces in Biology, 2009, 1, 97–111.

    Article  Google Scholar 

  122. Espinoza-Quinones F R, Zacarlein C E, Palacio S M, Obregon C L, Zenatti D C, Galante R M, Rossi N, Rossi F L, Pereira R A, Welter R A, Rizzulto M A. Removal of heavy metal from polluted river water using aquatic macrophytes Salvinia sp. Brazilian Journal of Plant Physiology, 2005, 35, 744–746.

    Google Scholar 

  123. Molisani M M, Rocha R, Machado W, Barreto R C, Lacerda L D. Mercury contents in aquatic macrophytes from two reservoirs in the Paraíba do Sul: Guandú river system, SE Brazil. Brazilian Journal of Biology, 2006, 66, 101–107.

    Article  Google Scholar 

  124. Suñe N, Sánchez G, Caffaratti S, Maine M A. Cadmium and chromium removal kinetics from solution by two aquatic macrophytes. Environmental Pollution, 2007, 145, 467–473.

    Article  Google Scholar 

  125. Olguín E J, Sánchez-Galván G, Pérez-Pérez T, Pérez-Orozco A. Surface adsorption, intracellular accumulation and compartmentalization of Pb (II) in batch-operated lagoons with Salvinia minima as affected by environmental conditions, EDTA and nutrients. Journal of Industrial and Microbiology Biotechnology, 2005, 32, 577–586.

    Article  Google Scholar 

  126. Dhir B. Salvinia: An aquatic fern with potential use in phytoremediation. Environment & We: An International Journal of Science & Technology. 2009, 4, 23–27.

    Google Scholar 

  127. Sánchez-Galván G, Monroy O, Gómez G, Olguín E J. Assessment of the hyperaccumulating lead capacity of Salvinia minima using bioadsorption and intracellular accumulation factors. Water, Air and Soil Pollution, 2008, 194, 77–90.

    Article  Google Scholar 

  128. Jacobson M E, Chiang S Y, Gueriguian L, Westholm L R, Pierson J, Zhu G, Saunders F M. Transformation kinetics of trinitrotoluene conversion in aquatic plants. In: McCutcheon S C, Schnoor J L. Phytoremediation: Transformation and Control of Contaminants, John-Wiley and Sons Inc, USA, 2004.

    Google Scholar 

  129. Olguín E J, Sánchez-Galván G, Pérez-Pérez P. Assessment of the phytoremediation potential of Salvinia minima Baker compared to Spirodela polyrrhiza in high-strength organic wastewater. Water, Air and Soil Pollution, 2007, 181, 135–147.

    Article  Google Scholar 

  130. Hoffmann T, Kutter C, Santamaria J M. Capacity of Salvinia minima Baker to tolerate and accumulate As and Pb. Engineering Life Science, 2004, 4, 61–65.

    Article  Google Scholar 

  131. Olguín J, Hernandez E. Ramos I. The effect of both different light conditions and the PH value on the capacity of Salvinia minimia Baker for removing cadmium, lead and chromium. Acta Biotechnology, 2002, 22, 121–131.

    Article  Google Scholar 

  132. Maine M A, Sune N, Lagger S C. Chromium bioaccumulation: Comparison of the capacity of two free-floating macrophytes. Water Research, 2004, 38, 1494–1501.

    Article  Google Scholar 

  133. Banerjee G, Sarker S. The role of Salvinia rotundifolia in scavenging aquatic Pb (II) pollution: A case study. Bioprocess Engineering, 1997, 17, 295–300.

    Google Scholar 

  134. Sen A K, Mondal N G. Removal and uptake of copper by Salvinia natans from wastewater. Water, Air and Soil Pollution, 1990, 49, 1–6.

    Article  Google Scholar 

  135. Sen A K, Bhattacharya M. Studies of uptake and toxic effects of Ni on Salvinia natans. Water, Air and Soil Pollution, 1994, 78, 141–152.

    Article  Google Scholar 

  136. Wang D, Liu Y, Liu X., Zhou F, Liu W, Xue Q. Towards a tunable and switchable water adhesion on a TiO2 nanotube film with patterned wettability. Chemical Communications, 2009, 45, 7018–7020.

    Article  Google Scholar 

  137. Cheng Z, Feng L, Jiang L, Tunable adhesive superhydrophobic surfaces for superparamagnetic microdroplets. Advanced Functional Materials, 2008, 18, 3219–3225.

    Article  Google Scholar 

  138. Bormashenko E, Stein T, Whyman G, Bormashenko Y, Pogreb R, Wetting properties of the multiscaled nanostructured polymer and metallic superhydrophobic surfaces. Langmuir, 2006, 22, 9982–9985.

    Article  Google Scholar 

  139. Gennes P G, Brochard-Wyart F, Quéré D. Capillarity and Wetting Phenomena, Springer, Berlin, Germany, 2003.

    MATH  Google Scholar 

  140. Feng L, Zhang Y, Xi J, Zhu Y, Wang N, Xia F, Jiang L. Petal effect: a superhydrophobic state with high adhesive force. Langmuir 2008, 24, 4114–4119.

    Article  Google Scholar 

  141. Hong X, Gao X F, Jiang L. Application of superhydrophobic surface with high adhesive force in no lost transport of superparamagnetic microdroplet. Journal of the American Chemical Society, 2007, 129, 1478–1479.

    Article  Google Scholar 

  142. Feng L, Zhang Y N, Cao Y Z, Ye X. X, Jiang L. The effect of surface microstructures and surface compositions on the wettabilities of flower petals. Soft Matter, 2011, 7, 2977–2980.

    Article  Google Scholar 

  143. Nosonovsky M, Bhushan B. Biologically Inspired Surfaces: Broadening the Scope of Roughness. Advanced Functional Materials, 2008, 18, 843–855.

    Article  Google Scholar 

  144. JeongH E, Lee S H, Kim J K, Suh K. Y. Nanoengineered multiscale hierarchical structures with tailored wetting properties. Langmuir, 2006, 22, 1640–1645.

    Article  Google Scholar 

  145. Bormashenko E, Pogreb R, Stein T, Whyman G, Erlich M, Musin A, Machavariani V, Aurbach D. Characterization of rough surfaces with vibrated drops. Physical Chemistry Chemical Physics, 2008, 27, 4056–4061.

    Article  Google Scholar 

  146. He B, Lee J, Patankar N A. Contact angle hysteresis on rough hydrophobic surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 248, 101–104.

    Article  Google Scholar 

  147. Xi J M, Jiang L. Biomimic superhydrophobic surface with high adhesive forces. Industrial & Engineering Chemistry Research, 2008, 47, 6354–6357.

    Article  Google Scholar 

  148. Extrand C W. Contact angles and their hysteresis as a measure of liquid-solid adhesion. Langmuir, 2004, 20, 4017–4021.

    Article  Google Scholar 

  149. Yoshimitsu Z, Nakajima A, Watanabe T, Hashimoto K. Contact angles and their hysteresis as a measure of liquid-solid adhesion. Langmuir, 2002, 18, 5818–5822.

    Article  Google Scholar 

  150. Quéré D, Azzopardi M J, Delattre L. Drops at rest on a tilted plane. Langmuir, 1998, 14, 2213–2216.

    Article  Google Scholar 

  151. McCarthy T J, Öner D. Ultrahydrophobic surfaces. Effects of topography length scales on wettability. Langmuir, 2000, 16, 7777–7782.

    Article  Google Scholar 

  152. Nosonovsky M, Bhushan B. Multiscale Dissipative Mechanisms and Hierarchical Surfaces: Friction, Superhydrophobicity, and Biomimetics, Springer, Heidelberg, Germany, 2008.

    Book  MATH  Google Scholar 

  153. Bormashenko E, Stein T, Pogreb R, Aurbach D. “Petal effect” on surfaces based on lycopodium: high-stick surfaces demonstrating high apparent contact angles. Journal of Physical Chemistry C, 2009, 113, 5568–5572.

    Article  Google Scholar 

  154. Jin M, Feng X, Feng L, Sun T, Zhai J, Li T, Jiang L. Superhydrophobic aligned polystyrene nanotube films with high adhesive force. Advanced Materials, 2005, 17, 1977–1981.

    Article  Google Scholar 

  155. Guo Z G, Liu W M. Sticky superhydrophobic surface. Applied Physics Letters, 2007, 90, 223111–3.

    Article  Google Scholar 

  156. Balu B, Breedveld V, Hess D W. Fabrication of “roll-off” and “sticky” superhydrophobic cellulose surfaces via plasma processing. Langmuir, 2008, 24, 4785–4790.

    Article  Google Scholar 

  157. Lim H S, Kwak D, Lee D Y, Lee S G, Cho K. UV-driven reversible switching of a roselike vanadium oxide film between superhydrophobicity and superhydrophilicity. Journal of the American Chemical Society, 2007, 129, 4128–4129.

    Article  Google Scholar 

  158. Das S N, Choi J H, Kar J P, Myoung J M. Tunable and reversible surface wettability transition of vertically aligned ZnO nanorod arrays. Applied Surface Science, 2009, 255, 7319–7322.

    Article  Google Scholar 

  159. Verplanck N, Coffinier Y, Thomy V, Boukherroub R. Wettabilityswitching techniques on superhydrophobic surfaces. Nanoscale Research Letters, 2007, 2, 577–596.

    Article  Google Scholar 

  160. Zhang J L, Han Y H. A topography/chemical composition gradient polystyrene surface:? Toward the investigation of the relationship between surface wettability and surface structure and chemical composition. Langmuir, 2008, 24, 796–801.

    Article  Google Scholar 

  161. Yu X, Wang Z, Jiang Y, Shi F, Zhang X. Reversible ph-responsive surface: From superhydrophobicity to superhydrophilicity. Advanced Materials, 2005, 17, 1289–1293.

    Article  Google Scholar 

  162. Lai Y, Lin C, Huang J, Zhuang H, Sun L, Nguyen T. Markedly controllable adhesion of superhydrophobic spongelike nanostructure TiO2 films. Langmuir, 2008, 24, 3867–3873.

    Article  Google Scholar 

  163. Wang D A, Liu Y, Liu X J, Zhou F, Liu W M. Towards a tunable and switchable water adhesion on a TiO2 nanotube film with patterned wettability. Chemical Communications, 2009, 45, 7018–7020.

    Article  Google Scholar 

  164. Zhu X T, Zhang Z Z, Men X H, Yang J, Xu X H. Fabrication of an intelligent superhydrophobic surface based on zno nanorod arrays with switchable adhesionproperty. Applied Surface Science, 2010, 256, 7619–7622.

    Article  Google Scholar 

  165. Uchida K, Nishikawa N, Izumi N, Yamazoe S, Mayama H, Kojima Y, Yokojima S, Nakamura S, Tsujii K, Irie M. Phototunable diarylethene microcrystalline surfaces: Lotus and petal effects upon wetting. Angewandte Chemie International Edition, 2010, 49, 5942–5944.

    Article  Google Scholar 

  166. Dawood M K, Zheng H, Liew T H. Mimicking both petal and lotus effects on a single silicon substrate by tuning the wettability of nanostructured surfaces. Langmuir, 2011, 27, 4126–4133.

    Article  Google Scholar 

  167. Duan H, Berggren K K. Directed self-assembly at the 10 nm scale by using capillary force-induced nanocohesion. Nano Letters, 2010, 10, 3710–3716.

    Article  Google Scholar 

  168. Zhao Y P, Fan J G. Spreading of a water droplet on a vertically aligned Si nanorod array surface. Applied Physics Letters, 2007, 88, 103123.

    Article  Google Scholar 

  169. Pirrung M C. How to make a DNA chip? Angewandte Chemie International Edition, 2002, 41, 1276–1289.

    Article  Google Scholar 

  170. Ito Y, Nogawa M. Preparation of a protein micro-array using a photo-reactive polymer for a cell-adhesion assay. Biomaterials, 2003, 24, 3021–3024.

    Article  Google Scholar 

  171. Orner B P, Derda R, Lewis R L, Thomson J A, Kiessling L L. Arrays for the Combinatorial Exploration of Cell Adhesion. Journal of the American Chemical Society, 2004, 126, 10808–10809.

    Article  Google Scholar 

  172. Rane T D, Puleo C M, Liu K J, Zhang Y, Lee A P, Wang T H. Counting single molecules in subnanolitre droplets. Lab on a Chip, 2010, 10, 161–164

    Article  Google Scholar 

  173. Gibson D G, Glass J I, Lartigue C, Noskov V N, Chuang R Y, Algire M A, Benders G A, Montague M G, Ma L, Moodie M M, Merryman C, Vashee S, Krishnakumar R, Assad-Garcia N, Andrews-Pfannkoch C, Denisova E A, Young L, Qi Z-Q, Segall-Shapiro T H, Calvey C H, Parmar P P, Huthinson III C A, Smith H O, Venter J C. Creation of a bacterial cell controlled by a chemically synthesized genome. Science, 2010, 329, 52–56.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiguang Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Guo, Z. & Liu, W. Interfacial effects of superhydrophobic plant surfaces: A review. J Bionic Eng 11, 325–345 (2014). https://doi.org/10.1016/S1672-6529(14)60047-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1672-6529(14)60047-0

Keywords

Navigation