Skip to main content
Log in

Analysis of the vibrissa parametric resonance causing a signal amplification during whisking behaviour

  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

The paper deals with the mechanical vibrational motion of vibrissae during natural exploratory behaviour of mammals. The theoretical analysis is based on a mechanical model of a cylindrical beam with circular natural configuration under an applied periodic force at the tip, which corresponds to the surface roughness of an investigated object. The equation of motion of the beam is studied using the Euler-Bernoulli beam theory and asymptotic methods of mechanics. It is shown that from the mechanical point of view the phenomenon of parametric resonance of the vibrissa is possible. It means that the amplitude of forced vibrations of a vibrissa increases exponentially with time, if it is stimulated within a specific resonance frequency range, which depends on biomechanical parameters of the vibrissa. The most intense parametric resonance occurs, when the excitation frequency is close to the doubled natural frequency of free vibrations. Thus, it may be used to distinguish and amplify specific periodic components of a complex roughness profile during texture discrimination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Tropea C, Bleckmann H (eds.). Nature inspired fluid mechanics. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, Springer-Verlag, Berlin Heidelberg, Germany, 2012.

    Google Scholar 

  2. Zimmermann K, Zeidis I, Behn C. Mechanics of Terrestrial Locomotion: With a Focus on Non-pedal Motion Systems. Springer-Verlag, Berlin Heidelberg, Germany, 2009.

    MATH  Google Scholar 

  3. Lepora N, Verschure P, Prescott T. The state of the art in biomimetics. Bioinspiration & Biomimetics, 2013, 8, 1–11.

    Google Scholar 

  4. Wu J, Yang H, Yan S. Energy saving strategies of honeybees in dipping nectar. Scientific Reports, 2015, 5, 15002.

    Article  Google Scholar 

  5. Zhao J, Wu J, Yan S. Erection mechanism of glossal hairs during honeybee feeding. Journal of Theoretical Biology, 2015, 386, 62–68.

    Article  MATH  Google Scholar 

  6. Behn C. Mathematical Modeling and Control of Biologically Inspired Uncertain Motion Systems with Aadaptive Features. Habilitation thesis, Technische Universität Ilmenau, Germany, 2013.

    Google Scholar 

  7. Schmidt M, Witte H, Zimmermann K, Niederschuh S, Helbig T, Voges D, Husung I, Volkova T, Will C, Behn C, Steigenberger J, Klauer G. Technical, non-visual characterization of substrate contact using carpal vibrissae as a biological model: An overview. Proceedings of the 58th International Scientific Colloquium, Ilmenau, Germany, 2014.

    Google Scholar 

  8. Vincent S. The function of vibrissae in the behavior of the white rat. Behavior Monographs, 1912, 1, 1–81.

    Google Scholar 

  9. Ahl A. The role of vibrissae in behavior: A status review. Veterinary Research Communications, 1986, 10, 245–268.

    Article  Google Scholar 

  10. Ebara S, Kumamoto K, Matsuura T, Mazurkiewicz J, Rice F. Similarities and differences in the innervation of mystacial vibrissal follicle-sinus complexes in the rat and cat: A confocal microscopic study. Journal of Comparative Neurology, 2002, 449, 103–119.

    Article  Google Scholar 

  11. Dörfl J. The musculature of the mystacial vibrissae of the white mouse. Journal of Anatomy, 1982, 135, 147–154.

    Google Scholar 

  12. Haidarliu S, Simony E, Golomb D, Ahissar E. Muscle architecture in the mystacial pad of the rat. The Anatomical Record, 2010, 293, 1192–1206.

    Article  Google Scholar 

  13. Carvell G, Simons D. Biometric analyses of vibrissal tactile discrimination in the rat. The Journal of Neuroscience, 1990, 10, 2638–2648.

    Google Scholar 

  14. Niederschuh S, Witte H, Schmidt M. The role of vibrissal sensing in forelimb position control during travelling locomotion in the rat (Rattus norvegicus, Rodentia). Zoology, 2014, 118, 51–62.

    Article  Google Scholar 

  15. Prescott T, Ahissar E, Izhikevich E (eds.). Scholarpedia of Touch, Atlantis Press, Paris, France, 2016.

    Google Scholar 

  16. Neimark M, Andermann M, Hopfield J, Moore C. Vibrissa resonance as a transduction mechanism for tactile encoding. The Journal of Neuroscience, 2003, 23, 6499–6509.

    Google Scholar 

  17. Andermann M, Moore C. Mechanical resonance enhances the sensitivity of the vibrissa sensory system to near-threshold stimuli. Brain Research, 2008, 1235, 74–81.

    Article  Google Scholar 

  18. Jadhav S, Feldman D. Texture coding in the whisker system. Current Opinion in Neurobiology, 2010, 20, 313–318.

    Article  Google Scholar 

  19. Hartmann M, Johnson N, Towal R, Assad C. Mechanical characteristics of rat vibrrissae: Resonant frequencies and damping in isolated whiskers and in the awake behaving animal. The Journal of Neuroscience, 2003, 23, 6510–6519.

    Google Scholar 

  20. Yan W, Kan Q, Kergrene K, Kang G, Feng X, Rajan R. A truncated conical beam model for analysis of the vibration of rat whiskers. Journal of Biomechanics, 2013, 46, 1987–1995.

    Article  Google Scholar 

  21. Quist B, Seghete V, Huet L, Murphey T, Hartmann M. Modeling forces and moments at the base of a rat vibrissa during noncontact whisking and whisking against an object. The Journal of Neuroscience, 2014, 34, 9828–9844.

    Article  Google Scholar 

  22. Landau L, Lifshitz E. Mechanics. Course of Theoretical Physics, 2nd ed., Pergamon Press, Oxford, United Kingdom, 1969.

    Google Scholar 

  23. Geisler C. From Sound to Synapse, Oxford University Press, New York, USA, 1998.

    Google Scholar 

  24. Warren R. Auditory Perception: An Analysis and Synthesis, 3rd ed., Cambridge University Press, Cambridge, United Kingdom, 2008.

    Book  Google Scholar 

  25. Berg R, Kleinfeld D. Rhythmic whisking by rat: Retraction as well as protraction of the vibrissae is under active muscular control. Journal of Neurophysiology, 2003, 89, 104–117.

    Article  Google Scholar 

  26. Mitchinson B, Gurney K, Redgrave P, Melhuish C, Pipe A, Pearson M, Gilhespy I, Prescott T. Empirically inspired simulated electro-mechanical model of the rat mystacial follicle-sinus complex. Proceedings of the Royal Society of London B: Biological Sciences, 2004, 271, 2509–2516.

    Article  Google Scholar 

  27. Hill D, Bermejo R, Zeigler H, Kleinfeld D. Biomechanics of the vibrissa motor plant in rat: Rhythmic whisking consists of triphasic neuromuscular activity. The Journal of Neuroscience, 2008, 28, 3438–3455.

    Article  Google Scholar 

  28. Behn C, Schmitz T, Witte H, Zimmermann K. Animal vibrissae: modelling and adaptive control of bio-inspired sensors. Proceedings of the 12th International Work-Conference on Artificial Neural Networks, Tenerife, Spain, 2013, 159–170.

    Google Scholar 

  29. Scholz G, Rahn C. Profile sensing with an actuated whisker. IEEE Transactions on Robotics and Automation, 2004, 20, 124–127.

    Article  Google Scholar 

  30. Schäfer M, Schmitz T, Will C, Behn C. Transversal vibrations of beams with boundary damping in the context of animal vibrissae. Proceedings of the 56th International Scientific Colloquium, Ilmenau, Germany, 2011.

    Google Scholar 

  31. Will C, Steigenberger J, Behn C. Object contour reconstruction using bio-inspired sensors. Proceedings of the 11th International Conference on Informatics in Control, Automation and Robotics, Vienna, Austria, 2014, 459–467.

    Chapter  Google Scholar 

  32. Quist B, Hartmann M. Mechanical signals at the base of a rat vibrissa: the effect of intrinsic vibrissa curvature and implications for the tactile exploration. Journal of Neurophysiology, 2012, 107, 2298–2312.

    Article  Google Scholar 

  33. Carl K. Technische Biologie des Tasthaar-Sinnessystems als Gestaltungsgrundlage für taktile stiftführende Mechanosensoren. Ph.D. thesis, Technische Universität Ilmenau, Germany, 2009. (in German)

    Google Scholar 

  34. Zimmer U. Self-localization in dynamic environments. IEEE/SOFT International Workshop BIES′95, Tokio, Japan, 1995.

    Google Scholar 

  35. Kaneko M, Kanayama N, Tsuji T. Vision based active antenna. IEEE International Conference on Robotics and Automation, Minneapolis, USA, 1996, 3, 2555–2560.

    Article  Google Scholar 

  36. Pearson M, Mitchinson B, Sullivan J, Pipe A, Prescott T. Biomimetic vibrissal sensing for robots. Proceedings of the Royal Society of London B: Biological Sciences, 2011, 366, 3085–3096.

    Article  Google Scholar 

  37. Fend M, Bovet S, Hafner V. The artificial mouse-A robot with whiskers and vision. 35th International Symposium on Robotics, Paris, France, 2004.

    Google Scholar 

  38. Knutsen P, Biess A, Ahissar E. Vibrissal kinematics in 3D: Tight coupling of azimuth, elevation, and torsion across different whisking modes. Neuron, 2008, 59, 35–42.

    Article  Google Scholar 

  39. Voges D, Carl K, Klauer G, Uhlig R, Schilling C, Behn C, Witte H. Structural characterization of the whisker system of the rat. IEEE Sensors Journal, 2012, 12, 332–339.

    Article  Google Scholar 

  40. Zuo Y, Perkon I, Diamond M. Whisking and whisker kinematics during a texture classification task. Philosophical Transactions of the Royal Society B, 2011, 366, 3058–3069.

    Article  Google Scholar 

  41. Gopal V, Hartmann M. Using hardware models to quantify sensory data acquisition across the rat vibrissal array. Bioinspiration & Biomimetics, 2007, 2, S135–S145.

    Article  Google Scholar 

  42. Stüttgen M, Kullmann S, Schwarz C. Responses of rat trigeminal ganglion neurons to longitudinal whisker stimulation. Journal of Neurophysiology, 2008, 100, 1879–1884.

    Article  Google Scholar 

  43. Svetlitsky V. Dynamics of Rods, Springer-Verlag, Berlin Heidelberg, Germany, 2005.

    MATH  Google Scholar 

  44. Quist B, Faruqi R, Hartmann M. Variation in young’s modulus along the length of a rat vibrissa. Journal of Biomechanics, 2011, 44, 2775–2781.

    Article  Google Scholar 

  45. Kantorovich L, Krylov V. Approximate Methods of Higher Analysis, Groningen, Netherlands, 1958.

    MATH  Google Scholar 

  46. Bogolyubov N, Mitropoliskii Y. Asymptotic Methods in the Theory of Nonlinear Oscillations. Gordon and Breach Science Publishers, New York, USA, 1961.

    Google Scholar 

  47. Malkin I. Theory of Stability of Motion, United States Atomic Energy Commission, Washington, D.C., USA, 1959.

    MATH  Google Scholar 

  48. Brecht M, Preilowski B, Merzenich M. Functional architecture of the mystacial vibrissae. Behavioural Brain Research, 1997, 84, 81–97.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatiana Volkova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volkova, T., Zeidis, I., Witte, H. et al. Analysis of the vibrissa parametric resonance causing a signal amplification during whisking behaviour. J Bionic Eng 13, 312–323 (2016). https://doi.org/10.1016/S1672-6529(16)60304-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1672-6529(16)60304-9

Keyword

Navigation