Skip to main content
Log in

A continuum model of motility in ameboid cells

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

A continuum model of cell motility in ameboid cells based on a viscoelastic description of the cytoplasm and active stress generation controlled by extracellular signals is developed and analyzed. The characteristics of locomotion depend on the specific active stress, elastic and viscous properties of the cytoplasm as well as on the strength of cell-substrate interactions. A one-dimensional version of the model is applied to describe the motion of a fibroblast. The force balance equation for the cell is solved together with reaction diffusion equations describing the dynamics of proteins essential for cell locomotion. The cell deformation is calculated, and the deformation patterns observed experimentally are reproduced by the model. The cell velocity as a function of cell-substrate interaction is also computed for various cell characteristics such as the active stress generated, the cell elasticity and the coupling between cell-substrate interaction and the ability of the cell to contract.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alberts, B., A. Johnson, J. Lewis, M. Raff, K. Roberts and P. Walter (2002). Molecular Biology of the Cell, 4th edn, New York and London: Garland.

    Google Scholar 

  • Alt, W. and M. Dembo (1999). Epidemiology, cellular automata, and evolution—cytoplasm dynamics and cell motion: two-phase flow models. Math. Biosci. 156, 207–1999.

    Article  MATH  Google Scholar 

  • Bausch, A., W. Moller and E. Sackmann (1999). Measurement of local viscoelasticity and forces in living cells by magnetic tweezers. Biophys. J. 76, 573–579.

    Google Scholar 

  • Bell, G. I. (1978). Models for the specific adhesion of cells to cells. Science 200, 618–627.

    Google Scholar 

  • Bershadsky, A. and B. Geiger (1999). Cytoskeleton-associated anchor and signal transduction proteins, in Guidebook to the Extracellular Matrix, Anchor, and Adhesion Proteins, Oxford: Oxford University Press, pp. 3–11.

    Google Scholar 

  • Boal, D. (2002). Mechanics of the Cell, Cambridge: Cambridge University Press.

    Google Scholar 

  • Bonner, J. T. (1998). A way of following individual cells in the migrating slugs of Dictyostelium discoideum. PNAS USA 95, 9355–9359.

    Article  Google Scholar 

  • Bottino, D., A. Mogilner, T. Roberts, M. Stewart and G. Oster (2002). How nematode sperm crawl. J. Cell Sci. 115, 367–384.

    Google Scholar 

  • Bray, D. (2001). Cell Movements: From Molecules to Motility, New York: Garland Publishing.

    Google Scholar 

  • Caille, N., O. Thoumine, Y. Tardy and J. Meister (2002). Contribution of the nucleus to the mechanical properties of endothelial cells. J. Biomech. 25, 177–197.

    Article  Google Scholar 

  • Chew, T., W. Wolf and P. Gallagher (2002). A fluorescent resonant energy transfer-based biosensor reveals transient and regional myosin light chain kinase activation in lamella and cleavage furrows. J. Cell Biol. 156, 543–553.

    Article  Google Scholar 

  • Chicurel, M. (2002). Cell migration research is on the move. Science 295, 606–609.

    Article  Google Scholar 

  • Chrzanowska-Wodnicka, M. and K. Burridge (1996). Rho-stimulated contractility drives the formation of stress fiber and focal adhesions. J. Cell Biol. 133, 1403–1415.

    Article  Google Scholar 

  • Cox, E. and A. Huttenlocher (1998). Regulation of integrin-mediated adhesion during cell migration. Microsc. Res. Tech. 43, 412–419.

    Article  Google Scholar 

  • Defilippi, P., C. Olivo and M. Venturino (1999). Actin cytoskeleton organization in response to integrin-mediated adhesion. Microsc. Res. Tech. 47, 67–78.

    Article  Google Scholar 

  • Dembo, M. and Y. L. Wang (1999). Stresses at the cell-to-substrate interface during locomotion of fibroblasts. Biophys. J. 76, 2307–2316.

    Google Scholar 

  • DiMilla, P. A., K. Barbee and D. A. Lauffenburger (1991). Mathematical model for the effects of adhesion and mechanics on cell migration speed. Biophys. J. 60, 15–37.

    Google Scholar 

  • Dong, C. and R. Skalak (1992). Leukocyte deformability: finite element modeling of large viscoelastic deformation. J. Theor. Biol. 158, 173–193.

    Google Scholar 

  • Dumontier, M., P. Hocht, U. Mintert and J. Faix (2000). Rac1 GTPases control filopodia formation, cell motility, endocytosis, cytokinesis and development in Dictyostelium. J. Cell Sci. 113, 2253–2265.

    Google Scholar 

  • Evans, E. and A. Yeung (1989). Apparent viscosity and cortical tension of blood granulocytes determined by micropipet aspiration. Biophys. J. 56, 151–160.

    Google Scholar 

  • Felder, S. and E. L. Elson (1990). Mechanics of fibroblast locomotion: quantitative analysis of forces and motions at the leading lamellas of fibroblasts. J. Cell Biol. 111, 2513–2526.

    Article  Google Scholar 

  • Felsenfeld, D. P., P. L. Schwartzberg, A. Venegas, R. Tse and M. P. Sheetz (1999). Selective regulation of integrin-cytoskeleton interactions by the tyrosine kinase Src. Nature Cell Biol. 1, 200–206.

    Article  Google Scholar 

  • Feneberg, W. and M. Westphal (2001). Dictyostelium cells’ cytoplasm as an active viscoplastic body. Euro. Biophys. J. 30, 284–294.

    Article  Google Scholar 

  • Galbraith, C. G. and M. P. Sheetz (1997). A micromachined device provides a new bend on fibroblast traction forces. PNAS USA 94, 9114–9118.

    Article  Google Scholar 

  • Gliksman, N. R., G. Santoyo, K. D. Novak and M. A. Titus (2001). Myosin I phosphorylation is increased by chemotactic stimulation. J. Biol. Chem. 276, 5235–5239.

    Article  Google Scholar 

  • Heidemann, S. R., S. Kaech, R. E. Buxbaum and A. Matus (1999). Direct observations of the mechanical behaviors of the cytoskeleton in living fibroblasts. J. Cell Biol. 145, 109–122.

    Article  Google Scholar 

  • Hollenbeck, P. (2001). Cytoskeleton: microtubules get the signal. Curr. Biol. 11, R820–R823.

    Article  Google Scholar 

  • Howe, A., A. Aplin and A. Alahari (1998). Integrin signaling and cell growth control. Curr. Opin. Cell Biol. 10, 220–231.

    Article  Google Scholar 

  • Janmey, P. (1991). Mechanical properties of cytoskeletal polymers. Curr. Opin. Cell Biol. 2, 4–11.

    Article  Google Scholar 

  • Janmey, P. (1998). The cytoskeleton and cell signalling: component localization and mechanical coupling. Physiol. Rev. 78, 763–781.

    Google Scholar 

  • Kaverina, I., O. Krylyshkina and J. V. Small (2002). Regulation of substrate adhesion dynamics during cell motility. Int. J. Biochem. Cell Biol. 34, 746–761.

    Article  Google Scholar 

  • Landau, L. and E. Lifshits (1965). Theory of Elasticity, Moscow: Science.

    Google Scholar 

  • Lauffenburger, D. A. (1989). A simple model for the effects of receptor-mediated cell-substratum adhesion on cell migration. Chem. Eng. Sci. 44, 1903–1914.

    Article  Google Scholar 

  • Lauffenburger, D. and A. Horwitz (1996). Cell migration: a physically integrated molecular process. Cell 84, 359–369.

    Article  Google Scholar 

  • Lo, C. M., H. B. Wang, M. Dembo and Y. L. Wang (2000). Cell movement is guided by the rigidity of the substrate. Biophys. J. 79, 144–152.

    Google Scholar 

  • MacKintosh, F. C. (1998). Theoretical models of viscoelasticity of actin solutions and the actin cortex. Biol. Bull. 194, 351–353.

    Google Scholar 

  • Maheshwari, G., G. Brown, D. A. Lauffenburger, A. Wells and L. G. Griffith (2000). Cell adhesion and motility depend on nanoscale RGD clustering. J. Cell Sci. 10, 1677–1686.

    Google Scholar 

  • Martin, K., J. Slack and S. Boerner (2002). Integrin connections map: to infinity and beyond. Science 296, 1652–1653.

    Article  Google Scholar 

  • Mitchison, T. J. and L. P. Cramer (1996). Actin-based cell motility and cell locomotion. Cell 84, 371–379.

    Article  Google Scholar 

  • Mogilner, A. and L. Edelstein-Keshet (2002). Regulation of actin dynamics in rapidly moving cells: a quantitative analysis. Biophys. J. 83, 1237–1258.

    Google Scholar 

  • Mogilner, A. and D. W. Verzi (2003). A simple 1-D physical model for the crawling nematode sperm cell. J. Stat. Phys. 110, 1169–1189.

    Article  MATH  Google Scholar 

  • Mogilner, A., E. Marland and D. Bottino (2000). A minimal model of locomotion applied to the steady gliding movement of fish keratocyte cells, in Mathematical Models for Biological Pattern Formation, New York: Springer, pp. 269–294.

    Google Scholar 

  • Munevar, S., Y. L. Wang and M. Dembo (2001a). Distinct roles of frontal and rear cell-substrate adhesions in fibroblast migration. Mol. Biol. Cell 12, 3947–3954.

    Google Scholar 

  • Munevar, S., Y. Wang and M. Dembo (2001b). Traction force microscopy of migrating normal and H-ras transformed 3T3 fibroblasts. Biophys. J. 80, 1744–1757.

    Google Scholar 

  • Nagayama, M., H. Haga and K. Kawabata (2001). Drastic change of local stiffness distribution correlating to cell migration in living fibroblasts. Cell Motil. Cytoskeleton 50, 173–179.

    Article  Google Scholar 

  • Palecek, S. P., C. E. Schmidt, D. A. Lauffenburger and A. F. Horwitz (1996). Integrin dynamics on the tail region of migrating fibroblasts. J. Cell Sci. 5, 941–952.

    Google Scholar 

  • Palecek, S. P., J. C. Loftus, M. H. Ginsberg, D. A. Lauffenburger and A. F. Horwitz (1997). Integrin-ligand binding properties govern cell migration speed through cell-substratum adhesiveness. Nature 385, 537–540.

    Article  Google Scholar 

  • Palsson, E. and H. G. Othmer (2000). A model for individual and collective cell movement in Dictyostelium discoideum. PNAS USA 97, 10448–10453.

    Google Scholar 

  • Ragsdale, G. K., J. Phelps and K. Luby-Phelps (1997). Viscoelastic response of fibroblasts to tension transmitted through adherens junctions. Biophys. J. 73, 2798–2808.

    Google Scholar 

  • Samarsky, A. A. (1983). Theory of Finite-Difference Methods, Moscow: Science.

    Google Scholar 

  • Schimd-Schönbein, G., T. Kosawada, R. Skalak and S. Chien (1995). Membrane model of endothelial cells and leukocytes. A proposal for the origin of a cortical stress. J. Biomech. Eng. 117, 171–178.

    Google Scholar 

  • Sheetz, M. P., D. Felsenfeld, C. G. Galbraith and D. Choquet (1999). Cell migration as a five-step cycle. Biochem. Soc. Symp. 65, 233–243.

    Google Scholar 

  • Skalak, R., C. Dong and C. Zhu (1990). Passive deformations and active motions of leukocytes. J. Biomech. Eng. 112, 295–302.

    Google Scholar 

  • Small, J. V. (1989). Microfilament-based motility in non-muscle cells. Curr. Opin. Cell Biol. 1, 75–79.

    Article  MathSciNet  Google Scholar 

  • Sod, G. (1985). Numerical Methods for Fluid Dynamics: Initial and Initial Boundary-value Problems, New York: Cambridge Univeristy Press.

    Google Scholar 

  • Soll, D. R. (1995). The use of computers in understanding how animal cells crawl, in International Review of Cytology, vol. 163, K. W. Jeon and J. Jarvik (Eds), Acdemic Press, pp. 43–104.

  • Theriot, J. and T. Mitchison (1991). Actin microfilament dynamics in locomoting cells. Nature 352, 107–108.

    Article  Google Scholar 

  • Verkhovsky, A. B., T. M. Svitkina and G. G. Borisy (1999). Self-polarization and directional motility of cytoplasm. Curr. Biol. 9, 11–20.

    Article  Google Scholar 

  • Wakatsuki, T., M. S. Kolodney, G. I. Zahalak and E. L. Elson (2000). Cell mechanics studied by a reconstituted model tissue. Biophys. J. 79, 2353–2368.

    Article  Google Scholar 

  • Wang, H. B., M. Dembo, S. K. Hanks and Y. Wang (2001). Focal adhesion kinase is involved in mechanosensing during fibroblast migration. PNAS USA 98, 11295–11300.

    Google Scholar 

  • Wood, W. and P. Martin (2002). Structures in focus-filopodia. Int. J. Biochem. Cell Biol. 34, 726–730.

    Article  Google Scholar 

  • Xu, J., Y. Tseng and D. Wirtz (2000). Strain hardening of actin filament networks. J. Biol. Chem. 46, 35886–35892.

    Google Scholar 

  • Yanai, M., J. P. Butler, T. Suzuki, A. Kanda, M. Kurachi, H. Tashiro and H. Sasaki (1999). Intracellular elasticity and viscosity in the body, leading, and trailing regions of locomoting neutrophils. Am. J. Physiol. 277, C432–C440.

    Google Scholar 

  • Yeung, A. and E. Evans (1989). Cortical shell-liquid core model for passive flow of liquid-like spherical cells into micropipets. Biophys. J. 56, 139–149.

    Google Scholar 

  • Zamir, E. and B. Geiger (2001). Molecular complexity and dynamics of cell-matrix adhesions. J. Cell Sci. 20, 3583–3590.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans G. Othmer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gracheva, M.E., Othmer, H.G. A continuum model of motility in ameboid cells. Bull. Math. Biol. 66, 167–193 (2004). https://doi.org/10.1016/j.bulm.2003.08.007

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.bulm.2003.08.007

Keywords

Navigation