Comptes Rendus
An implicit FDTD scheme for the propagation of VLF–LF radio waves in the Earth–ionosphere waveguide
[Un schéma FDTD implicite pour la propagation radio VLF–LF dans le guide d'onde Terre–ionosphère]
Comptes Rendus. Physique, Volume 15 (2014) no. 5, pp. 393-402.

Cet article décrit un nouveau schéma aux différences finies pour la propagation VLF–LF dans le guide d'onde Terre–ionosphère. Ce schéma repose sur une solution implicite de l'équation auxiliaire qui gouverne la densité de courant dans l'ionosphère. Les avantages et inconvénients du nouveau schéma sont discutés. Son principal avantage tient dans sa condition de stabilité qui est identique à celle de la méthode FDTD dans le vide. Cela permet d'augmenter le pas temporel de la résolution FDTD et, en conséquence, de réduire le temps de calcul. Des résultats de calcul illustrent la bonne précision du nouveau schéma et les réductions de temps calcul qu'il permet d'obtenir.

A new finite-difference time-domain scheme is presented for the propagation of VLF–LF radio waves in the Earth–ionosphere waveguide. The new scheme relies on the implicit solution of the auxiliary equation that governs the current density in the ionosphere. The advantages and drawbacks of the new scheme are discussed. Its main advantage is its stability condition, which is the same as that of the FDTD method in a vacuum. This permits the time step of the calculation to be increased and then the overall computational time to be reduced. Numerical experiments demonstrate the accuracy of the new scheme and the reduction of the computational time.

Publié le :
DOI : 10.1016/j.crhy.2014.05.002
Keywords: Communication, Propagation, VLF, LF, FDTD
Mot clés : Communication, Propagation, VLF, LF, FDTD
Jean-Pierre Bérenger 1

1 JPB Consultant, 5, rue des Docteurs Thiers, 26400 Crest, France
@article{CRPHYS_2014__15_5_393_0,
     author = {Jean-Pierre B\'erenger},
     title = {An implicit {FDTD} scheme for the propagation of {VLF{\textendash}LF} radio waves in the {Earth{\textendash}ionosphere} waveguide},
     journal = {Comptes Rendus. Physique},
     pages = {393--402},
     publisher = {Elsevier},
     volume = {15},
     number = {5},
     year = {2014},
     doi = {10.1016/j.crhy.2014.05.002},
     language = {en},
}
TY  - JOUR
AU  - Jean-Pierre Bérenger
TI  - An implicit FDTD scheme for the propagation of VLF–LF radio waves in the Earth–ionosphere waveguide
JO  - Comptes Rendus. Physique
PY  - 2014
SP  - 393
EP  - 402
VL  - 15
IS  - 5
PB  - Elsevier
DO  - 10.1016/j.crhy.2014.05.002
LA  - en
ID  - CRPHYS_2014__15_5_393_0
ER  - 
%0 Journal Article
%A Jean-Pierre Bérenger
%T An implicit FDTD scheme for the propagation of VLF–LF radio waves in the Earth–ionosphere waveguide
%J Comptes Rendus. Physique
%D 2014
%P 393-402
%V 15
%N 5
%I Elsevier
%R 10.1016/j.crhy.2014.05.002
%G en
%F CRPHYS_2014__15_5_393_0
Jean-Pierre Bérenger. An implicit FDTD scheme for the propagation of VLF–LF radio waves in the Earth–ionosphere waveguide. Comptes Rendus. Physique, Volume 15 (2014) no. 5, pp. 393-402. doi : 10.1016/j.crhy.2014.05.002. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2014.05.002/

[1] K. Davies Ionospheric Radio, IEE Electromagn. Waves Ser., London, 1990

[2] F.J. Kelly ELF/VLF/LF propagation and system design, Naval Research Laboratory, Washington DC, 1987 (Report 9028)

[3] D.F. Morfitt, R.F. Halley, Comparison of waveguide and wave hop techniques for VLF propagation modeling, Naval Weapons Center, China Lake, CA, 1970, NWC Techniques Publication 4952.

[4] J.-P. Bérenger FDTD Computation of VLF–LF propagation in the Earth–ionosphere waveguide, Bordeaux, France ( June 1994 )

[5] M. Thévenot; J.-P. Bérenger; T. Monedière; F. Jecko A FDTD scheme for the computation of VLF–LF propagation in the Anisotropic Earth–Ionosphere Waveguide, URSI Gen. Ass., Lille, France, September 1996

[6] M. Thévenot; J.-P. Bérenger; T. Monedière; F. Jecko A FDTD scheme for the computation of VLF–LF propagation in the anisotropic Earth–ionosphere waveguide, Ann. Telecommun., Volume 54 (1999), pp. 297-310

[7] J.-P. Bérenger FDTD computation of VLF–LF propagation in the Earth–ionosphere waveguide, Ann. Telecommun., Volume 57 (2002), pp. 1059-1090

[8] A. Taflove; S.C. Hagness Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artech House, 2005

[9] S.A. Cummer An analysis of new and existing FDTD methods for isotropic cold plasma and a method for improving their accuracy, IEEE Trans. Antennas Propag., Volume 45 (1997), pp. 392-400

[10] J.H. Lee; D.K. Kalluri Three-dimensional FDTD simulation of electromagnetic wave transformation in a dynamic inhomogeneous magnetized plasma, IEEE Trans. Antennas Propag., Volume 47 (1999), pp. 1146-1151

[11] S.A. Cummer Modeling electromagnetic propagation in the Earth–ionosphere waveguide, IEEE Trans. Antennas Propag., Volume 48 (2000), pp. 1420-1429

[12] W.H. Hu; S.A. Cummer An FDTD model for low and high altitude lightning-generated EM fields, IEEE Trans. Antennas Propag., Volume 54 (2006), pp. 1513-1522

[13] Y. Yu; J. Simpson An EJ collocated 3-D FDTD model of electromagnetic wave propagation in magnetized cold plasma, IEEE Trans. Antennas Propag., Volume 58 (2010), pp. 469-479

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Body area networks at radio frequencies: Creeping waves and antenna analysis

Khaleda Ali; Farshad Keshmiri; Alessio Brizzi; ...

C. R. Phys (2015)


Study of wave propagation in various kinds of plasmas using adapted simulation methods, with illustrations on possible future applications

Stéphane Heuraux; Éric Faudot; Filipe da Silva; ...

C. R. Phys (2014)


The mantle rotation pole position. A solar component

Fernando Lopes; Jean-Louis Le Mouël; Dominique Gibert

C. R. Géos (2017)