Comptes Rendus
Radio science for connecting humans to information systems / L'homme connecté
Compact planar monopole antenna for wearable wireless applications
[Antenne monopole planaire compacte pour les systèmes de communication sans fil portée sur le corps humain]
Comptes Rendus. Physique, Volume 16 (2015) no. 9, pp. 851-861.

Nous rapportons dans cet article l'étude et la réalisation d'une antenne de type monopole placée directement au-dessus d'un conducteur magnétique artificiel (AMC) sans introduire une couche supplémentaire entre les deux. Les résultats des simulations, qui ont été validés par des mesures, montrent que les performances de l'antenne étudiée sont aussi bonnes que celles rapportées jusqu'à présent. L'antenne fonctionne à 1,92 GHz, avec une bande passante de 8%. Elle a une adaptation de 35 dB à sa fréquence de résonance. Le gain mesuré de l'antenne est de 4,3 dBi, avec une ouverture à 3 dB de 70° et un rapport entre le rayonnement face avant et le rayonnement face arrière de l'antenne de 15,8 dB. Les résultats des mesures et des simulations montrent que l'AMC permet de bien isoler le monopole du corps. La valeur localisée du débit d'absorption spécifique (DAS) calculée avec 1 g de tissu est 0.34 W/Kg pour une puissance injectée de 1 W. Le dispositif avec l'AMC est très bien adapté à des applications où l'antenne doit être portée directement sur le corps humain.

We report in this paper the design and the realization of a compact wearable monopole antenna directly placed over an Artificial Magnetic Conductor (AMC), which is located directly on the body. The major contribution is that there is no space between the monopole and the AMC, or between the AMC and the body. Simulation results and measurements are in good agreement and show that the antenna's performances are as good as the best ones reported so far in the literature, while having a smaller volume. The antenna operates at 1.92 GHz with a bandwidth of 8%. The reflection coefficient of the antenna is 35 dB. The measurement of the antenna gain provides a value of 4.3 dBi with a half-power beamwidth of 70° and a front-to-back radiation ratio of 15.8 dB. Measurement and simulation results also show that the AMC isolates well the monopole from the body: the localized Specific Absorption Rate (SAR) value calculated with 1 g of tissue is 0.34 W/kg with an injected power of 1 W. The antenna with the AMC is well adapted for wearable applications.

Publié le :
DOI : 10.1016/j.crhy.2015.07.008
Keywords: Artificial magnetic conductor, High-impedance surface, Planar monopole, Human body, Specific Absorption Rate, Wearable antenna
Mot clés : Conducteur magnétique artificiel, Surface haute impédance, Monopole planaire, Corps humain, Débit d'absorption spécifique, Antenne portée
Tsitoha Andriamiharivolamena 1, 2 ; Pierre Lemaître-Auger 1 ; Smail Tedjini 1 ; Franck Tirard 2

1 Université Grenoble Alpes, LCIS, 50, rue Barthélémy-de-Laffemas, 26902 Valence, France
2 SAFRAN SAGEM, 100, avenue de Paris, 91344 Massy, France
@article{CRPHYS_2015__16_9_851_0,
     author = {Tsitoha Andriamiharivolamena and Pierre Lema{\^\i}tre-Auger and Smail Tedjini and Franck Tirard},
     title = {Compact planar monopole antenna for wearable wireless applications},
     journal = {Comptes Rendus. Physique},
     pages = {851--861},
     publisher = {Elsevier},
     volume = {16},
     number = {9},
     year = {2015},
     doi = {10.1016/j.crhy.2015.07.008},
     language = {en},
}
TY  - JOUR
AU  - Tsitoha Andriamiharivolamena
AU  - Pierre Lemaître-Auger
AU  - Smail Tedjini
AU  - Franck Tirard
TI  - Compact planar monopole antenna for wearable wireless applications
JO  - Comptes Rendus. Physique
PY  - 2015
SP  - 851
EP  - 861
VL  - 16
IS  - 9
PB  - Elsevier
DO  - 10.1016/j.crhy.2015.07.008
LA  - en
ID  - CRPHYS_2015__16_9_851_0
ER  - 
%0 Journal Article
%A Tsitoha Andriamiharivolamena
%A Pierre Lemaître-Auger
%A Smail Tedjini
%A Franck Tirard
%T Compact planar monopole antenna for wearable wireless applications
%J Comptes Rendus. Physique
%D 2015
%P 851-861
%V 16
%N 9
%I Elsevier
%R 10.1016/j.crhy.2015.07.008
%G en
%F CRPHYS_2015__16_9_851_0
Tsitoha Andriamiharivolamena; Pierre Lemaître-Auger; Smail Tedjini; Franck Tirard. Compact planar monopole antenna for wearable wireless applications. Comptes Rendus. Physique, Volume 16 (2015) no. 9, pp. 851-861. doi : 10.1016/j.crhy.2015.07.008. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2015.07.008/

[1] C. Hertleer; H. Rogier; L. Vallozzi; L. Van Langenhove A textile antenna for off-body communication integrated into protective clothing for firefighters, IEEE Trans. Antennas Propag., Volume 57 (2009) no. 4, pp. 919-925

[2] E.K. Kaivanto; M. Berg; E. Salonen; P. de Maagt Wearable circularly polarized antenna for personal satellite communication and navigation, IEEE Trans. Antennas Propag., Volume 59 (2011) no. 12, pp. 4490-4496

[3] K. Koski; L. Sydanheimo; Y. Rahmat-Samii; L. Ukkonen Fundamental characteristics of electro-textiles in wearable UHF RFID patch antennas for body-centric sensing systems, IEEE Trans. Antennas Propag., Volume 62 (2014) no. 12, pp. 6454-6462

[4] R. Moro; S. Agneessens; H. Rogier; M. Bozzi Wearable textile antenna in substrate integrated waveguide technology, Electron. Lett., Volume 48 (2012) no. 16, pp. 985-987

[5] R. Moro; M. Bozzi; S. Agneessens; H. Rogier Compact cavity-backed antenna on textile in substrate integrated waveguide (SIW) technology, EuMC (2013), pp. 1007-1010

[6] S. Agneessens; S. Lemey; R. Moro; M. Bozzi; H. Rogier The next generation textile antennas based on substrate integrated waveguide technology, URSI GASS 2014 (2014), pp. 1-4

[7] S. Lemey; F. Declercq; H. Rogier Dual-band substrate integrated waveguide textile antenna with integrated solar harvester, IEEE Antennas Wirel. Propag. Lett., Volume 13 (2014), pp. 269-272

[8] M. Mantash; A.-C. Tarot; S. Collardey; K. Mahdjoubi Investigation of flexible textile antennas and AMC reflectors, Int. J. Antennas Propag., Volume 2012 (2012) (10 pp)

[9] H.R. Raad; A.I. Abbosh; H.M. Al-Rizzo; D.G. Rucker Flexible and compact AMC based antenna for telemedicine applications, IEEE Trans. Antennas Propag., Volume 61 (2013) no. 2, pp. 524-531

[10] Shaozhen Zhu; R. Langley Dual-band wearable textile antenna on an EBG substrate, IEEE Trans. Antennas Propag., Volume 57 (2009) no. 4, pp. 926-935

[11] Jaehoon Kim; Y. Rahmat-Samii Low-profile loop antenna above EBG structure, 2005 IEEE (2005), pp. 570-573

[12] S. Kim; Y.-J. Ren; H. Lee; A. Rida; S. Nikolaou; M.M. Tentzeris Monopole antenna with inkjet-printed EBG array on paper substrate for wearable applications, IEEE Antenn. Wireless Propag. Lett., Volume 11 (2012), pp. 663-666

[13] F. Yang; A. Aminian; Y. Rahmat-Samii A novel surface-wave antenna design using a thin periodically loaded ground plane, Microw. Opt. Technol. Lett., Volume 47 (2005) no. 3, pp. 240-245

[14] M.F. Abedin; M. Ali Effects of EBG reflection phase profiles on the input impedance and bandwidth of ultrathin directional dipoles, IEE Trans. Antenn. Propag., Volume 53 (2005) no. 11, pp. 3664-3672

[15] Fan Yang; Y. Rahmat-Samii Reflection phase characterizations of the EBG ground plane for low profile wire antenna applications, IEE Trans. Antenn. Propag., Volume 51 (2003) no. 10, pp. 2691-2703

[16] H. Mosallaei; K. Sarabandi Antenna miniaturization and bandwidth enhancement using a reactive impedance substrate, IEE Trans. Antenn. Propag., Volume 52 (2004) no. 9, pp. 2403-2414

[17] F. Costa; S. Genovesi; A. Monorchio On the bandwidth of high-impedance frequency selective surfaces, IEEE Antenn. Wireless Propag. Lett., Volume 8 (2009), pp. 1341-1344

[18] F. C. Commission Evaluating compliance with FCC guidelines for human exposure to radiofrequency electromagnetic fields, Office of Engineering and Technology, Federal Communications Commission, Washington, DC, 2001 (DC, tech. rep., suppl. C to OET Bull. 65)

[19] I. Guideline Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz), Health Phys, Volume 74 (1998) no. 4, pp. 494-522

[20] I. C. on N.-I. R. Protection ICNIRP statement on the “Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz)”, Health Phys., Volume 97 (2009) no. 3, pp. 257-258

[21] G. Goussetis; A.P. Feresidis; J.C. Vardaxoglou Tailoring the AMC and EBG characteristics of periodic metallic arrays printed on grounded dielectric substrate, IEE Trans. Antenn. Propag., Volume 54 (2006) no. 1, pp. 82-89

[22] P. Kovács; Z. Raida; M. Martínez-Vázquez Parametric study of mushroom-like and planar periodic structures in terms of simultaneous AMC and EBG properties, Radioengineering, Volume 17 (2008) no. 4, pp. 19-24

[23] D. Sievenpiper; Lijun Zhang; R.F.J. Broas; N.G. Alexopolous; E. Yablonovitch High-impedance electromagnetic surfaces with a forbidden frequency band, IEEE Trans. Microw. Theory Techn., Volume 47 (1999) no. 11, pp. 2059-2074

[24] S.A. Tretyakov; C.R. Simovski Dynamic model of artificial reactive impedance surfaces, J. Electromagn. Waves Appl., Volume 17 (2003) no. 1, pp. 131-145

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Metamaterial-based “sabre” antenna

Habiba Hafdallah Ouslimani; Tangjie Yuan; Houcine Kanane; ...

C. R. Phys (2014)


Terahertz photomixers based on ultra-wideband horn antennas

Alexandre Beck; Tahsin Akalin; Guillaume Ducournau; ...

C. R. Phys (2010)


The reciprocity theorem applied to finding the best coupling incidence

Jean-Pierre Adam; Jean-Christophe Joly; Bernard Pecqueux; ...

C. R. Phys (2009)