Comptes Rendus
Boussinesq approximation, convection
The Rayleigh–Benard problem in extremely confined geometries with and without the Soret effect
[Le problème de Rayleigh–Bénard dans des géométries extrêmement confinées avec et sans effet Soret]
Comptes Rendus. Mécanique, Volume 335 (2007) no. 9-10, pp. 638-654.

On examine la stabilité linéaire d'une couche liquide chauffée par le bas (le problème classique de Rayleigh–Bénard) mais confinée latéralement par quatre parois rigides et adiabatiques. La caractéristique essentielle de cette étude est que la hauteur de la couche est beaucoup plus grande que les deux autres dimensions horizontales. On prend aussi en compte l'effet Soret. L'objectif ultime de cette étude est une meilleure connaissance du mode opératoire de colonnes thermogravitationnelles ainsi que la recherche d' une méthode nouvelle pour mesurer des coefficients Soret positifs, basée sur la variation du nombre de Rayleigh critique.

We examine the linear stability of a liquid layer heated from below (the classical Rayleigh–Benard problem) but laterally confined between four vertical rigid and adiabatic boundaries. The main feature of the present study is that the height of the layer is much greater than the two other horizontal dimensions. The Soret effect is also taken into account. The ultimate objective of the study is a better knowledge of the operation of thermogravitational columns, and the search for a possible new way to measure positive Soret coefficients based on the variation of the critical Rayleigh number.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2007.08.011
Keywords: Computational fluid mechanics, Rayleigh–Benard, Stability, Galerkin, Thermodiffusion, Soret
Mot clés : Mécanique des fluides numérique, Rayleigh–Bénard, Stabilité, Galerkin, Thermodiffusion, Soret
Jean K. Platten 1 ; Manuel Marcoux 2 ; Abdelkader Mojtabi 2

1 University of Mons-Hainaut; B-7000 Mons, Belgium
2 IMFT, Allée du Professeur Camille-Soula, 31400 Toulouse, France
@article{CRMECA_2007__335_9-10_638_0,
     author = {Jean K. Platten and Manuel Marcoux and Abdelkader Mojtabi},
     title = {The {Rayleigh{\textendash}Benard} problem in extremely confined geometries with and without the {Soret} effect},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {638--654},
     publisher = {Elsevier},
     volume = {335},
     number = {9-10},
     year = {2007},
     doi = {10.1016/j.crme.2007.08.011},
     language = {en},
}
TY  - JOUR
AU  - Jean K. Platten
AU  - Manuel Marcoux
AU  - Abdelkader Mojtabi
TI  - The Rayleigh–Benard problem in extremely confined geometries with and without the Soret effect
JO  - Comptes Rendus. Mécanique
PY  - 2007
SP  - 638
EP  - 654
VL  - 335
IS  - 9-10
PB  - Elsevier
DO  - 10.1016/j.crme.2007.08.011
LA  - en
ID  - CRMECA_2007__335_9-10_638_0
ER  - 
%0 Journal Article
%A Jean K. Platten
%A Manuel Marcoux
%A Abdelkader Mojtabi
%T The Rayleigh–Benard problem in extremely confined geometries with and without the Soret effect
%J Comptes Rendus. Mécanique
%D 2007
%P 638-654
%V 335
%N 9-10
%I Elsevier
%R 10.1016/j.crme.2007.08.011
%G en
%F CRMECA_2007__335_9-10_638_0
Jean K. Platten; Manuel Marcoux; Abdelkader Mojtabi. The Rayleigh–Benard problem in extremely confined geometries with and without the Soret effect. Comptes Rendus. Mécanique, Volume 335 (2007) no. 9-10, pp. 638-654. doi : 10.1016/j.crme.2007.08.011. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2007.08.011/

[1] S. Chandrasekhar Hydrodynamic and Hydromagnetic Stability, Oxford University Press, Clarendon, 1961 (pp. 9–75)

[2] J.K. Platten; J.-Cl. Legros Convection in Liquids, Springer, Berlin, 1984 (Chapter IX)

[3] J.K. Platten A variational formulation for the stability of flows with temperature gradients, Int. J. Engrg. Sci., Volume 9 (1971), pp. 855-869

[4] J.-Cl. Legros; J.K. Platten The two component Bénard problem with Poiseuille flow, J. Non-Equilib. Thermodyn., Volume 2 (1977) no. 4, pp. 211-232

[5] Ch. Jung; M. Lücke; P. Büchel Influence of through-flow on linear pattern formation properties in binary mixture convection, Phys. Rev. E, Volume 54 (1996), pp. 1510-1529

[6] E. Piquer; M.C. Charrier-Mojtabi; M. Azaiez; A. Mojtabi Convection mixte en fluide binaire avec effet Soret : étude analytique de la transition vers les rouleaux 2d, C. R. Mecanique, Volume 333 (2005), pp. 179-186

[7] S.H. Davis Convection in a box: linear theory, J. Fluid Mech., Volume 30 (1967), pp. 465-478

[8] O. Ecenarro; J.A. Madariaga; J. Navarro; C.M. Santamaria; J.A. Carrion; J.M. Saviron Thermogravitational thermal diffusion in liquid polymer solutions, Macromolecules, Volume 27 (1994), pp. 4968-4971

[9] M.M. Bou-Ali; O. Ecenarro; J.A. Madariaga; C.M. Santamaria; J.J. Valencia Thermogravitational measurement of the Soret coefficient of liquid mixtures, J. Phys.: Condens. Matter, Volume 10 (1998), pp. 3321-3331

[10] M.M. Bou-Ali; O. Ecenarro; J.A. Madariaga; C.M. Santamaria; J.J. Valencia Soret coefficient of some binary liquid mixtures, J. Non-Equilib. Thermodyn., Volume 24 (1999), pp. 228-233

[11] J.K. Platten; M.M. Bou-Ali; J.-F. Dutrieux Precise determination of the Soret, thermodiffusion and isothermal diffusion coefficients of binary mixtures of dodecane, isobutylbenzene and 1,2,3,4-tetrahydronaphtalene, Philosophical Magazine, Volume 83 (2003) no. 17–18, pp. 2001-2010

[12] M.M. Bou-Ali; J.J. Valencia; J.A. Madariaga; C. Santamaria; O. Ecenarro; J.-F. Dutrieux Determination of the thermodiffusion coefficient in three binary organic liquid mixtures by the thermogravitational method, Philosophical Magazine, Volume 83 (2003) no. 17–18, pp. 2011-2015

[13] J.-F. Dutrieux, Contributions à la métrologie du coefficient Soret, Ph.D. thesis, University of Mons-Hainaut, Belgium, 2002

[14] M.M. Bou-Ali, J.K. Platten, J.A. Madariaga, C.M. Santamaria, Soret effect convective coupling and instabilities in thermogravitational column, in: J.P. Meyer, A.G. Malan (Eds.), Proceedings of the 4th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics HEFAT 2005, Cairo, Egypt, 19–22 September 2005, paper BM1

[15] M.M. Bou Ali; O. Ecenarro; J.A. Madariaga; C.M. Santamaria Stability of convection in a vertical binary fluid layer with an adverse density gradient, Phys. Rev. E, Volume 59 (1999) no. 1, pp. 1250-1252

[16] W.H. Furry; R.C. Jones; L. Onsager On the theory of isotope separation by thermal diffusion, Phys. Rev., Volume 55 (1939), pp. 1083-1095

[17] S.D. Majumdar The theory of separation of isotopes by thermal diffusion, Phys. Rev., Volume 81 (1951), pp. 844-848

[18] G. Labrosse, Boussinesq approximation, and beyond, in tall thermo-gravitational column, C. R. Mecanique 335 (2007), this issue; | DOI

[19] G. Chavepeyer; J.K. Platten Simulation numérique 2D de la séparation dans une colonne de thermogravitation et comparaison avec la théorie de Furry–Jones–Onsager–Majumdar, Entropie, Volume 198/199 (1996), pp. 25-29

[20] S.J. Linz; M. Lücke Convection in binary mixtures: A Galerkin model with impermeable boundary conditions, Phys. Rev. A, Volume 35 (1987), pp. 3997-4000

[21] J.K. Platten; J.-F. Dutrieux; G. Chavepeyer Soret effect and free convection: a way to measure Soret coefficients (W. Köhler; S. Wiegand, eds.), Thermal Nonequilibrium Phenomena in Fluid Mixtures, Lecture Notes in Physics, vol. 584, 2002, pp. 313-333

[22] O. Lhost; J.K. Platten Transition between steady states, traveling waves and modulated waves in the system water–isopropanol heated from below, Phys. Rev. A, Volume 38 (1988) no. 6, pp. 3147-3150

[23] H. Touiri; J.K. Platten; G. Chavepeyer Effect of the separation ratio on the transition between travelling waves and steady convection in the two-component Rayleigh–Benard problem, Eur. J. Mech., B/Fluids, Volume 15 (1996) no. 2, pp. 241-257

[24] R.J. Schmidt; S.W. Milverton On the instability of a fluid when heated from below, Proc. Roy. Soc. A, Volume 152 (1935), pp. 586-594

[25] J.K. Platten; G. Chavepeyer Oscillatory motion in Bénard cell due to the Soret effect, J. Fluid Mech., Volume 60 (1973), pp. 305-319

[26] J.K. Platten; D. Villers; O. Lhost LDV study of some free convection problems at extremely slow velocities: Soret driven convection and Marangoni convection (R.J. Adrian; T. Asanuma; D.F.G. Durão; F. Durst; J.H. Whitelaw, eds.), Laser Anemometry in Fluid Mechanics, vol. 3, LADOAN—Instituto Superior Técnico, Lisbon, 1988, pp. 245-260

[27] O. Lhost, Contribution expérimentale à l'étude de la convection libre induite par effet Soret, Ph.D. thesis, University of Mons, 1990

[28] P. Kolodner; H. Williams; C. Moe Optical measurement of the Soret coefficient of ethanol/water solutions, J. Chem. Phys., Volume 88 (1988) no. 10, pp. 6512-6524

[29] K.J. Zhang; M.E. Briggs; R.W. Gammond; J.V. Sengers Optical measurement of the Soret coefficient and the diffusion coefficient of liquid mixtures, J. Chem. Phys., Volume 104 (1996), pp. 6881-6892

[30] S. Wiegand; W. Köhler Measurement of transport coefficients by an optical grating technique (W. Köhler; S. Wiegand, eds.), Thermal Nonequilibrium Phenomena in Fluid Mixtures, Lecture Notes in Physics, vol. 584, 2002, pp. 189-210

[31] M.G. Velarde; R.S. Schechter Thermal diffusion and convective stability: an analysis of the convected fluxes, Phys. Fluids, Volume 15 (1972), pp. 1707-1714

[32] A. Mojtabi; J.K. Platten; M.-C. Charrier-Mojtabi Onset of free convection in solutions with variable Soret coefficients, J. Non-Equilib. Thermodyn., Volume 27 (2002), pp. 25-44

[33] J. Boussinesq Théorie analytique de la chaleur, Gauthiers-Villars, Paris, 1903

[34] C.-S. Yih Thermal instability of a viscous fluid, Quart. Appl. Math., Volume 17 (1959), pp. 25-42

[35] R.A. Wooding Instability of a viscous liquid of variable density in a vertical Hele-Shaw cell, J. Fluid Mech., Volume 7 (1960), pp. 501-515

[36] J. Pallares; F.X. Grau; F. Giralt Flow transitions in laminar Rayleigh–Benard convection in a cubical cavity at moderate Rayleigh numbers, Int. J. Heat Mass Trans., Volume 42 (1999), pp. 753-769

[37] A. Bergeon, University Paul Sabatier and Institut de Mécanique des Fluides, Toulouse, private communication

[38] P. Costesèque; D. Fargue; P. Jamet Thermodiffusion in porous media and its consequences (W. Köhler; S. Wiegand, eds.), Thermal Nonequilibrium Phenomena in Fluid Mixtures, Lecture Notes in Physics, vol. 584, 2002, pp. 389-427

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Thermodiffusion phenomena

Pierre Costesèque; Abdelkader Mojtabi; Jean Karl Platten

C. R. Méca (2011)


Influence of solid phase thermal conductivity on species separation rate in packed thermogravitational columns: A direct numerical simulation model

Hossein Davarzani; Manuel Marcoux

C. R. Méca (2011)


Convection mixte en fluide binaire avec effet Soret : étude analytique de la transition vers les rouleaux transversaux 2D

Estelle Piquer; Marie-Catherine Charrier-Mojtabi; Mejdi Azaiez; ...

C. R. Méca (2005)