Comptes Rendus
On the scaling of the mean length of streamline segments in various turbulent flows
Comptes Rendus. Mécanique, Volume 340 (2012) no. 11-12, pp. 859-866.

The geometrical properties of streamline segments (Wang, 2010 [1]) and their bounding surface (Schaefer et al., 2012 [2]) in direct numerical simulations (DNS) of different types of turbulent flows at different Reynolds numbers are reviewed. Particular attention is paid to the geometrical relation of the bounding surface and local and global extrema of the instantaneous turbulent kinetic energy field. Also a previously derived model equation for the normalized probability density of the length of streamline segments is reviewed and compared with the new data. It is highlighted that the model is Reynolds number independent when normalized with the mean length of streamline segments yielding that the mean length lm plays a paramount role as the only relevant length scale in the pdf. Based on a local expansion of the field of the absolute value of the velocity u along the streamline coordinate a scaling of the mean size of extrema of u is derived which is then shown to scale with the mean length of streamline segments. It turns out that lm scales with the geometrical mean of the Kolmogorov scale η and the Taylor microscale λ so that lm(ηλ)1/2. The new scaling is confirmed based on the DNS cases over a range of Taylor based Reynolds numbers of Reλ=50300.

Publié le :
DOI : 10.1016/j.crme.2012.10.032
Mots clés : Turbulence, Streamline segment, Scaling
Philip Schäfer 1 ; Markus Gampert 1 ; Norbert Peters 1

1 Institute of Combustion Technology, RWTH Aachen University, Templergraben, 64, 52056 Aachen, Germany
@article{CRMECA_2012__340_11-12_859_0,
     author = {Philip Sch\"afer and Markus Gampert and Norbert Peters},
     title = {On the scaling of the mean length of streamline segments in various turbulent flows},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {859--866},
     publisher = {Elsevier},
     volume = {340},
     number = {11-12},
     year = {2012},
     doi = {10.1016/j.crme.2012.10.032},
     language = {en},
}
TY  - JOUR
AU  - Philip Schäfer
AU  - Markus Gampert
AU  - Norbert Peters
TI  - On the scaling of the mean length of streamline segments in various turbulent flows
JO  - Comptes Rendus. Mécanique
PY  - 2012
SP  - 859
EP  - 866
VL  - 340
IS  - 11-12
PB  - Elsevier
DO  - 10.1016/j.crme.2012.10.032
LA  - en
ID  - CRMECA_2012__340_11-12_859_0
ER  - 
%0 Journal Article
%A Philip Schäfer
%A Markus Gampert
%A Norbert Peters
%T On the scaling of the mean length of streamline segments in various turbulent flows
%J Comptes Rendus. Mécanique
%D 2012
%P 859-866
%V 340
%N 11-12
%I Elsevier
%R 10.1016/j.crme.2012.10.032
%G en
%F CRMECA_2012__340_11-12_859_0
Philip Schäfer; Markus Gampert; Norbert Peters. On the scaling of the mean length of streamline segments in various turbulent flows. Comptes Rendus. Mécanique, Volume 340 (2012) no. 11-12, pp. 859-866. doi : 10.1016/j.crme.2012.10.032. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2012.10.032/

[1] L. Wang On properties of fluid turbulence along streamlines, J. Fluid Mech., Volume 648 (2010), pp. 183-203

[2] P. Schaefer; M. Gampert; N. Peters The length distribution of streamline segments in homogeneous isotropic decaying turbulence, Phys. Fluids, Volume 24 (2012), p. 045104

[3] A.N. Kolmogorov The local structure of turbulence in an incompressible viscous fluid for very large Reynolds numbers, Dokl. Akad. Nauk SSSR, Volume 30 (1941), pp. 301-305

[4] U. Frisch Turbulence: The Legacy of A.N. Kolmogorov, Cambridge University Press, 1995

[5] S. Corrsin Random geometric problems suggested by turbulence (M. Rosenblatt; C. van Atta, eds.), Statistical Models and Turbulence, Lecture Notes in Physics, vol. 12, Springer Verlag, 1971, pp. 300-316

[6] Z.S. She; E. Jackson; S.A. Orszag Intermittent vortex structures in homogeneous isotropic turbulence, Nature, Volume 344 (1990), pp. 226-228

[7] Y. Kaneda; T. Ishihara High-resolution direct numerical simulation of turbulence, J. Turbulence, Volume 7 (2006), pp. 1-17

[8] L. Wang; N. Peters The length scale distribution function of the distance between extremal points in passive scalar turbulence, J. Fluid Mech., Volume 554 (2006), pp. 457-475

[9] L. Wang; N. Peters Length scale distribution functions and conditional means for various fields in turbulence, J. Fluid Mech., Volume 608 (2008), pp. 113-138

[10] C.H. Gibson Fine structure of scalar fields mixed by turbulence. I. Zero gradient points and minimal gradient surfaces, Phys. Fluids, Volume 11 (1968), pp. 2305-2315

[11] P. Schaefer; M. Gampert; J.H. Goebbert; L. Wang; N. Peters Testing of different model equations for the mean dissipation using Kolmogorov flows, Flow Turbul. Combust., Volume 85 (2010), pp. 225-243

[12] P. Rao Geometry of streamlines in fluid flow theory, Def. Sci. J., Volume 28 (1978), pp. 175-178

[13] W. Braun; F.D. Lillo; B. Eckhardt Geometry of particle paths in turbulent flows, J. Turbul., Volume 7 (2006), pp. 1-10

[14] A. Scagliarini Geometric properties of particle trajectories in turbulent flows, J. Turbul., Volume 12 (2011)

[15] P. Schaefer Curvature statistics of streamlines in various turbulent flows, J. Turbul., Volume 13 (2012) no. 1, p. 28

[16] S. Goto; D.R. Osborne; J.C. Vassilicos; J.D. Haigh Acceleration statistics as measures of statistical persistence of streamlines in isotropic turbulence, Phys. Rev. E, Volume 71 (2005)

[17] S. Goto; J.C. Vassilicos Particle pair diffusion and persistent streamline topology in two-dimensional turbulence, New J. Phys., Volume 6 (2004), p. 65

[18] J. Soria; B. Cantwell Topological visualisation of focal structures in free shear flows, Appl. Sci. Res., Volume 53 (1994), pp. 375-386

[19] P. Schaefer; M. Gampert; J. Goebbert; M. Gauding; N. Peters Asymptotic analysis of homogeneous isotropic decaying turbulence with unknown initial conditions, J. Turbul., Volume 12 (2011), pp. 1-20

[20] M. Gampert; J.H. Goebbert; P. Schaefer; M. Gauding; N. Peters; F. Aldudak; M. Oberlack Extensive strain along gradient trajectories in the turbulent kinetic energy field, New J. Phys., Volume 13 (2011), p. 043012

[21] P. Schaefer, M. Gampert, N. Peters, Joint statistics and conditional mean strain rates of streamline segments, Phys. Scr. T (2012), in press.

[22] M. Gampert, P. Schaefer, J. Goebbert, N. Peters, Decomposition of the field of the turbulent kinetic energy into regions of compressive and extensive strain, Phys. Scr. T (2012), in press.

[23] S. Rice Mathematical analysis of random noise, Bell Syst. Tech. J., Volume 23 (1944) no. 282

[24] S. Rice Mathematical analysis of random noise, Bell Syst. Tech. J., Volume 24 (1945) no. 46

[25] A.N. Kolmogorov Dissipation of energy under locally isotropic turbulence, Dokl. Akad. Nauk SSSR, Volume 32 (1941), pp. 16-18

[26] H. Tennekes Eulerian and Lagrangian time microscales in isotropic turbulence, J. Fluid Mech., Volume 67 (1975), pp. 561-567

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

On the regularity of capillary water waves with vorticity

David Henry

C. R. Math (2011)


On the existence and qualitative theory of stratified solitary water waves

Robin Ming Chen; Samuel Walsh; Miles H. Wheeler

C. R. Math (2016)


Singular nature of nonlinear macroscale effects in high-rate flow through porous media

Mikhail Panfilov; Constantin Oltean; Irina Panfilova; ...

C. R. Méca (2003)