Comptes Rendus
A nonlocal Fourier's law and its application to the heat conduction of one-dimensional and two-dimensional thermal lattices
Comptes Rendus. Mécanique, Volume 344 (2016) no. 6, pp. 388-401.

This study focuses on heat conduction in unidimensional lattices also known as microstructured rods. The lattice thermal properties can be representative of concentrated thermal interface phases in one-dimensional segmented rods. The exact solution of the linear time-dependent spatial difference equation associated with the lattice problem is presented for some given initial and boundary conditions. This exact solution is compared to the quasicontinuum approximation built by continualization of the lattice equations. A rational-based asymptotic expansion of the pseudo-differential problem leads to an equivalent nonlocal-type Fourier's law. The differential nonlocal Fourier's law is analysed with respect to thermodynamic models available in the literature, such as the Guyer–Krumhansl-type equation. The length scale of the nonlocal heat law is calibrated with respect to the lattice spacing. An error analysis is conducted for quantifying the efficiency of the nonlocal model to capture the lattice evolution problem, as compared to the local model. The propagation of error with the nonlocal model is much slower than that in its local counterpart. A two-dimensional thermal lattice is also considered and approximated by a two-dimensional nonlocal heat problem. It is shown that nonlocal and continualized heat equations both approximate efficiently the two-dimensional thermal lattice response. These extended continuous heat models are shown to be good candidates for approximating the heat transfer behaviour of microstructured rods or membranes.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2016.01.001
Mots clés : Heat equation, Lattice, Fourier's law, Nonlocal thermodynamics, Gradient Fourier's law, Nonlocality, Diffusion equation
Noël Challamel 1 ; Cécile Grazide 1 ; Vincent Picandet 1 ; Arnaud Perrot 1 ; Yingyan Zhang 2

1 Université de Bretagne Sud, UBS – Institut Dupuy de Lôme, Centre de Recherche, Rue de Saint Maudé, BP92116, 56321 Lorient Cedex, France
2 School of Computing, Engineering & Mathematics, Western Sydney University, Locked Bag 1797, Penrith NSW 2751, Australia
@article{CRMECA_2016__344_6_388_0,
     author = {No\"el Challamel and C\'ecile Grazide and Vincent Picandet and Arnaud Perrot and Yingyan Zhang},
     title = {A nonlocal {Fourier's} law and its application to the heat conduction of one-dimensional and two-dimensional thermal lattices},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {388--401},
     publisher = {Elsevier},
     volume = {344},
     number = {6},
     year = {2016},
     doi = {10.1016/j.crme.2016.01.001},
     language = {en},
}
TY  - JOUR
AU  - Noël Challamel
AU  - Cécile Grazide
AU  - Vincent Picandet
AU  - Arnaud Perrot
AU  - Yingyan Zhang
TI  - A nonlocal Fourier's law and its application to the heat conduction of one-dimensional and two-dimensional thermal lattices
JO  - Comptes Rendus. Mécanique
PY  - 2016
SP  - 388
EP  - 401
VL  - 344
IS  - 6
PB  - Elsevier
DO  - 10.1016/j.crme.2016.01.001
LA  - en
ID  - CRMECA_2016__344_6_388_0
ER  - 
%0 Journal Article
%A Noël Challamel
%A Cécile Grazide
%A Vincent Picandet
%A Arnaud Perrot
%A Yingyan Zhang
%T A nonlocal Fourier's law and its application to the heat conduction of one-dimensional and two-dimensional thermal lattices
%J Comptes Rendus. Mécanique
%D 2016
%P 388-401
%V 344
%N 6
%I Elsevier
%R 10.1016/j.crme.2016.01.001
%G en
%F CRMECA_2016__344_6_388_0
Noël Challamel; Cécile Grazide; Vincent Picandet; Arnaud Perrot; Yingyan Zhang. A nonlocal Fourier's law and its application to the heat conduction of one-dimensional and two-dimensional thermal lattices. Comptes Rendus. Mécanique, Volume 344 (2016) no. 6, pp. 388-401. doi : 10.1016/j.crme.2016.01.001. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2016.01.001/

[1] H.S. Carslaw; J.C. Jaeger Conduction of Heat in Solids, Oxford University Press, 1959

[2] A.C. Eringen A unified theory of thermomechanical materials, Int. J. Eng. Sci., Volume 4 (1966), pp. 179-202

[3] A.C. Eringen; B.S. Kim Relation between non-local elasticity and lattice dynamics, Cryst. Lattice Defects, Volume 7 (1977), pp. 51-57

[4] A.C. Eringen On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, J. Appl. Phys., Volume 54 (1983), pp. 4703-4710

[5] M.A. Collins A quasicontinuum approximation for solitons in an atomic chain, Chem. Phys. Lett., Volume 77 (1981), pp. 342-347

[6] M.D. Kruskal; N.J. Zabusky Stroboscopic perturbation for treating a class of nonlinear wave equations, J. Math. Phys., Volume 5 (1964), pp. 231-244

[7] N.J. Zabusky Computational synergetics and mathematical innovation, J. Comput. Phys., Volume 43 (1981), pp. 195-249

[8] P. Rosenau Dynamics of nonlinear mass-spring chains near the continuum limit, Phys. Lett. A, Volume 118 (1986) no. 5, pp. 222-227

[9] N. Challamel; D. Zorica; T.M. Atanacković; D.T. Spasić On the fractional generalization of Eringen's nonlocal elasticity for wave propagation, C. R. Mecanique, Volume 341 (2013), pp. 298-303

[10] N. Challamel; C.M. Wang; I. Elishakoff Discrete systems behave as nonlocal structural elements: bending, buckling and vibration analysis, Eur. J. Mech. A, Solids, Volume 44 (2014), pp. 125-135

[11] N. Challamel; V. Picandet; B. Collet; T. Michelitsch; I. Elishakoff; C.M. Wang Revisiting finite difference and finite element methods applied to structural mechanics within enriched continua, Eur. J. Mech. A, Solids, Volume 53 (2015), pp. 107-120

[12] N. Challamel; C.M. Wang; I. Elishakoff Nonlocal or gradient elasticity macroscopic models: a question of concentrated or distributed microstructure, Mech. Res. Commun., Volume 71 (2016), pp. 25-31

[13] T. Atanacković; S. Konjic; L. Oparnica; D. Zorica The Cattaneo type space–time fractional heat conduction equation, Contin. Mech. Thermodyn., Volume 24 (2012), pp. 293-311

[14] T. Michelitsch; G.A. Maugin; M. Rahman; S. Derogar; A.F. Nowakowski; F.C.G.A. Nicolleau A continuum theory for one-dimensional self-similar elasticity and applications to wave propagation and diffusion, Eur. J. Appl. Math., Volume 23 (2012) no. 6, pp. 709-735

[15] A. Sapora; P. Cornetti; A. Carpinteri Diffusion problems on fractional nonlocal media, Cent. Eur. J. Phys., Volume 11 (2013) no. 10, pp. 1255-1261

[16] V.E. Tarasov Fractional diffusion equations for lattice and continuum: Grünwald–Letnikov differences and derivatives approach, Int. J. Stat. Mech. (2014) (ID 873529)

[17] M. Zingales An exact thermodynamical model of power-law temperature time-scaling, Ann. Phys., Volume 365 (2016), pp. 24-37

[18] C. Cattaneo Sulla conduzione del calore, Atti Semin. Mat. Fis. Univ. Modena, Volume 3 (1948), pp. 83-101

[19] I. Müller; T. Ruggeri Rational Extended Thermodynamics, Springer, 1998

[20] T. Atanackovic; S. Pilipovic; B. Stankovic; D. Zorica Fractional Calculus with Applications in Mechanics: Vibrations and Diffusion Processes, ISTE–Wiley, 2014

[21] T. Atanackovic; S. Pilipovic; B. Stankovic; D. Zorica Fractional Calculus with Applications in Mechanics: Wave Propagation, Impact and Variational Principles, ISTE–Wiley, 2014

[22] L. Deseri; M. Zingales A mechanical picture of fractional-order Darcy equation, Commun. Nonlinear Sci. Numer. Simul., Volume 20 (2015), pp. 940-949

[23] Y.J. Yu; X.G. Tian; X.R. Liu Size-dependent generalized thermoelasticity using Eringen's nonlocal model, Eur. J. Mech. A, Solids, Volume 51 (2015), pp. 96-106

[24] S. Oterkus; E. Madenci; A. Agwai Peridynamic thermal diffusion, Chin. J. Comput. Phys., Volume 265 (2014), pp. 71-96

[25] H. Zhan; G. Zhang; Y. Zhang; V.B.C. Tan; J.M. Bell; Y. Gu Thermal conductivity of a new carbon nanotube analogue: the diamond nanothread, Carbon, Volume 98 (2016), pp. 232-237

[26] R.A. Guyer; J.A. Krumhansl Solution of the linearized phonon Boltzman equation, Phys. Rev., Volume 148 (1966), pp. 766-778

[27] R.A. Guyer; J.A. Krumhansl Thermal conductivity, second sound and phonon hydrodynamic phenomena in non-metallic crystals, Phys. Rev., Volume 148 (1966) no. 778–788

[28] G. Lebon; M. Grmela Weakly nonlocal heat equation in rigid solids, Phys. Lett. A, Volume 214 (1996), pp. 184-188

[29] D. Jou; J. Casas-Vasquez; G. Lebon Extended Irreversible Thermodynamics, Springer, 2010

[30] A. Sellitto; D. Jou; J. Bafaluy Non-local effects in radial heat transport in silicon thin layers and grapheme sheets, Proc. R. Soc. A, Math. Phys. Eng. Sci. (2011) | DOI

[31] D. Jou; A. Sellitto; F.X. Alvarez Heat waves and phonon–wall collisions in nanowires, Proc. R. Soc. A, Volume 467 (2011), pp. 2520-2533

[32] D. Jou; V.A. Cimmelli; A. Sellitto Nonlocal heat transport with phonons and electrons: application to metallic nanowires, Int. J. Heat Mass Transf., Volume 55 (2012), pp. 2338-2344

[33] D. Burnett The distribution of molecular velocities and the mean motion in a non-uniform gas, Proc. Lond. Math. Soc., Volume 40 (1936), pp. 382-435

[34] G.I. Barenblatt; I.P. Zheltov; I.N. Kochina Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks (strata), J. Appl. Math. Mech., Volume 24 (1960), pp. 1286-1303

[35] A.C. Aifantis On the problem of diffusion in solids, Acta Mech., Volume 37 (1980), pp. 265-296

[36] T.W. Ting Certain non-steady flows of second-order fluids, Arch. Ration. Mech. Anal., Volume 14 (1963), pp. 1-26

[37] P.J. Chen; M.E. Gurtin On a theory of heat conduction involving two temperatures, Z. Angew. Math. Phys., Volume 19 (1968), pp. 614-627

[38] G.A. Maugin On the thermomechanics of continuous media with diffusion and/or weak nonlocality, Arch. Appl. Mech., Volume 75 (2006), pp. 723-738

[39] A. Berezovski; J. Engelbrecht; P. Ván Weakly nonlocal thermoelasticity for microstructured solids: microdeformation and microtemperature, Arch. Appl. Mech., Volume 84 (2014), pp. 1249-1261

[40] S.P. Filopoulos; T.K. Papathanasiou; S.I. Markolefas; G.J. Tsamasphyros Generalized thermoelastic models for linear elastic materials with micro-structure, part I: enhanced Green–Lindsay model, J. Therm. Stresses, Volume 37 (2014), pp. 624-641

[41] S.P. Filopoulos; T.K. Papathanasiou; S.I. Markolefas; G.J. Tsamasphyros Generalized thermoelastic models for linear elastic materials with micro-structure, part II: enhanced Lord–Shulman model, J. Therm. Stresses, Volume 37 (2014), pp. 642-659

[42] J. Crank; P. Nicolson A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type, Proc. Camb. Philos. Soc., Volume 43 (1947), pp. 50-67 (see also Adv. Comput. Math., 6, 1996, pp. 207-226)

[43] J.G. Charney; R. Fjørtoft; J. von Neumann Numerical integration of the barotropic vorticity equation, Tellus, Volume 2 (1950) no. 4, pp. 237-254

[44] L. Collatz The Mathematical Treatment of Differential Equations, Springer-Verlag, New York, 1960

[45] B. Gustafsson; H.O. Kreiss; J. Oliger Time Dependent Problems and Difference Methods, Wiley, New York, 1995

[46] J.A.D. Wattis Quasi-continuum approximations to lattice equations arising from the discrete non-linear telegraph equation, J. Phys. A, Math. Gen., Volume 33 (2000), pp. 5925-5944

[47] P.G. Kevrekidis; I.G. Kevrekidis; A.R. Bishop; E.S. Titi Continuum approach to discreteness, Phys. Rev. E, Volume 65 (2002) no. 046613, pp. 1-13

[48] I.V. Andrianov; J. Awrejcewicz; D. Weichert Improved continuous models for discrete media, Math. Probl. Eng., Volume 986242 (2010), pp. 1-35

[49] P. Nielsen; I.A. Teakle Turbulent diffusion of momentum and suspended particles: a finite-mixing-length theory, Phys. Fluids, Volume 16 (2004) no. 7, pp. 2342-2348

[50] P. Rosenau Dynamics of dense lattices, Phys. Rev. B, Condens. Matter, Volume 36 (1987) no. 11, pp. 5868-5876

[51] I.V. Andrianov; J. Awrejcewicz Continuous models for 2D discrete media valid for higher-frequency domain, Comput. Struct., Volume 86 (2008), pp. 140-144

[52] M. Lombardo; H. Askes Elastic wave dispersion in microstructured membranes, Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci., Volume 466 (2010), pp. 1789-1807

[53] T.D. Lee Can time be a discrete variable?, Phys. Lett. B, Volume 122 (1983) no. 3, 4, pp. 217-220

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Static and dynamic behaviour of nonlocal elastic bar using integral strain-based and peridynamic models

Noël Challamel

C. R. Méca (2018)


On the fractional generalization of Eringenʼs nonlocal elasticity for wave propagation

Noël Challamel; Dušan Zorica; Teodor M. Atanacković; ...

C. R. Méca (2013)


A dispersive wave equation using nonlocal elasticity

Noël Challamel; Lalaonirina Rakotomanana; Loïc Le Marrec

C. R. Méca (2009)