Comptes Rendus
Numerical analysis of the effects induced by normal faults and dip angles on rock bursts
Comptes Rendus. Mécanique, Volume 345 (2017) no. 10, pp. 690-705.

The study of mining effects under the influences of a normal fault and its dip angle is significant for the prediction and prevention of rock bursts. Based on the geological conditions of panel 2301N in a coalmine, the evolution laws of the strata behaviors of the working face affected by a fault and the instability of the fault induced by mining operations with the working face of the footwall and hanging wall advancing towards a normal fault are studied using UDEC numerical simulation. The mechanism that induces rock burst is revealed, and the influence characteristics of the fault dip angle are analyzed. The results of the numerical simulation are verified by conducting a case study regarding the microseismic events. The results of this study serve as a reference for the prediction of rock bursts and their classification into hazardous areas under similar conditions.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2017.06.009
Mots clés : Normal fault, Dip angle of a fault, Strata behaviors, Instability of a fault, Rock burst
Lishuai Jiang 1 ; Pu Wang 1 ; Peipeng Zhang 2 ; Pengqiang Zheng 2 ; Bin Xu 1

1 State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, China
2 Department of Resources and Civil Engineering, Shandong University of Science and Technology, Tai'an 271000, China
@article{CRMECA_2017__345_10_690_0,
     author = {Lishuai Jiang and Pu Wang and Peipeng Zhang and Pengqiang Zheng and Bin Xu},
     title = {Numerical analysis of the effects induced by normal faults and dip angles on rock bursts},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {690--705},
     publisher = {Elsevier},
     volume = {345},
     number = {10},
     year = {2017},
     doi = {10.1016/j.crme.2017.06.009},
     language = {en},
}
TY  - JOUR
AU  - Lishuai Jiang
AU  - Pu Wang
AU  - Peipeng Zhang
AU  - Pengqiang Zheng
AU  - Bin Xu
TI  - Numerical analysis of the effects induced by normal faults and dip angles on rock bursts
JO  - Comptes Rendus. Mécanique
PY  - 2017
SP  - 690
EP  - 705
VL  - 345
IS  - 10
PB  - Elsevier
DO  - 10.1016/j.crme.2017.06.009
LA  - en
ID  - CRMECA_2017__345_10_690_0
ER  - 
%0 Journal Article
%A Lishuai Jiang
%A Pu Wang
%A Peipeng Zhang
%A Pengqiang Zheng
%A Bin Xu
%T Numerical analysis of the effects induced by normal faults and dip angles on rock bursts
%J Comptes Rendus. Mécanique
%D 2017
%P 690-705
%V 345
%N 10
%I Elsevier
%R 10.1016/j.crme.2017.06.009
%G en
%F CRMECA_2017__345_10_690_0
Lishuai Jiang; Pu Wang; Peipeng Zhang; Pengqiang Zheng; Bin Xu. Numerical analysis of the effects induced by normal faults and dip angles on rock bursts. Comptes Rendus. Mécanique, Volume 345 (2017) no. 10, pp. 690-705. doi : 10.1016/j.crme.2017.06.009. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2017.06.009/

[1] E.J. Sellers; P. Klerck Modelling of the effect of discontinuities on the extent of the fracture zone surrounding deep tunnels, Tunn. Undergr. Space Technol., Volume 15 (2000) no. 4, pp. 463-469

[2] P. Wang; J.Q. Jiang; P.P. Zhang; Q.L. Wu Breaking process and mining stress evolution characteristics of a high-position hard and thick stratum, Int. J. Min. Sci. Technol., Volume 26 (2016) no. 4, pp. 563-569

[3] T. Li; Z.L. Mu; G.J. Liu; J.L. Du; H. Lu Stress spatial evolution law and rockburst danger induced by coal mining in fault zone, Int. J. Min. Sci. Technol., Volume 26 (2016) no. 3, pp. 409-415

[4] Y.L. Rebetsky Achievements of tectonophysics research in Russia: present status and perspective, C. R. Géoscience, Volume 344 (2012) no. 3–4, pp. 116-124

[5] S.R. Wang; N. Li; C.L. Li; Z.S. Zou; X. Chang Instability mechanism analysis of pressure-arch in coal mining field under different seam dip angles, Dyna (Bilbao), Volume 90 (2015), pp. 279-284

[6] G. Swift Relationship between joint movement and mining subsidence, Bull. Eng. Geol. Environ., Volume 73 (2014) no. 73, pp. 163-176

[7] W.C. Zhu; Z.H. Li; L. Zhu; C.A. Tang Numerical simulation on rockburst of underground opening triggered by dynamic disturbance, Tunn. Undergr. Space Technol., Volume 25 (2010) no. 5, pp. 587-599

[8] Z.A. Zhou Normal fault causing coal bed thin and thick and “reversed-drag” normal fault, Bull. Inst. Geomech. CAGS (1985), pp. 107-114

[9] Y.F. Zeng; S.Q. Liu; W. Zhang; Y.L. Zhai Application of artificial neural network technology to predicting small faults and folds in coal seams, China, Sustain. Water Resour. Manag., Volume 2 (2016) no. 2, pp. 175-181

[10] T.G. Blenkinsop Relationships between faults, extension fractures and veins, and stress, J. Struct. Geol., Volume 30 (2008) no. 5, pp. 622-632

[11] D.J. Gates; P. Hornby; K.B. Mckenzie A mechanical theory of normal fault orientation, Eng. Geol., Volume 38 (1994) no. 1–2, pp. 35-52

[12] Z.H. Li; L.M. Dou; Z.L. Mu; A.Y. Cao; S.Y. Gong; Y.G. Wang Effect of fault on roof rock burst, J. Min. Saf. Eng., Volume 25 (2008) no. 2, p. 154-158,163

[13] X.H. Chen; W.Q. Li; X.Y. Yan Analysis on rock burst danger when fully-mechanized caving coal face passed fault with deep mining, Saf. Sci., Volume 50 (2012) no. 4, pp. 645-648

[14] A.F. Durand; E.A. Eargas; L.E. Vaz Applications of numerical limit analysis (NLA) to stability problems of rock and soil masses, Int. J. Rock Mech. Min. Sci., Volume 43 (2006) no. 3, pp. 408-425

[15] Z.P. Meng; S.P. Peng; H. Li Influence of normal faults on the physical and mechanical properties of coal and the distribution of underground pressure, J. China Coal Soc., Volume 26 (2001) no. 6, pp. 561-566

[16] W. Müller Numerical simulation of rock bursts, Min. Sci. Technol., Volume 12 (1991) no. 1, pp. 27-42

[17] J.W. Shi; Z.L. Chen Based on numerical simulation study of rockburst in roadway induced by fault, Adv. Mater. Res., Volume 962–965 (2014), pp. 370-374

[18] A. Sainoki; H.S. Mitri Dynamic behaviour of mining-induced fault slip, Int. J. Rock Mech. Min. Sci., Volume 66 (2014) no. 1, pp. 19-29

[19] H.G. Ji; H.S. Ma; J.A. Wang; Y.H. Zhang; H. Cao Mining disturbance effect and mining arrangements analysis of near-fault mining in high tectonic stress region, Saf. Sci., Volume 50 (2012) no. 4, pp. 649-654

[20] Y.D. Jiang; T. Wang; Y.X. Zhao; C. Wang Numerical simulation of fault activation pattern induced by coal extraction, J. China Univ. Min. Technol., Volume 42 (2013) no. 1, pp. 1-5

[21] Z.H. Li; L.M. Dou; Z.Y. Lu; X.W. Lu; G.R. Wang Study of the fault slide destabilization induced by coal mining, J. Min. Saf. Eng., Volume 27 (2010) no. 4, pp. 499-504

[22] X.P. Lai; P.F. Shan; J.T. Cao; F. Cui; H. Sun Simulation of asymmetric destabilization of mine-void rock masses using a large 3D physical model, Rock Mech. Rock Eng., Volume 49 (2016) no. 2, pp. 487-502

[23] T.B. Li; X.F. Wang; L.B. Meng A physical simulation test for the rockburst in tunnels, J. Mt. Sci., Volume 8 (2011) no. 2, pp. 278-285

[24] Z.L. Li; L.M. Dou; W. Cai; G.F. Wang; H. Jiang; S.Y. Gong; Y.L. Ding Investigation and analysis of the rock burst mechanism induced within fault–pillars, Int. J. Rock Mech. Min. Sci., Volume 70 (2014) no. 9, pp. 192-200

[25] S.P. Peng; Z.P. Meng; Y.L. Li Influence of faults on coal roof stability by physical modeling study, Coal Geol. Explor., Volume 29 (2001) no. 3, pp. 1-4

[26] A.W. Wang; Y.S. Pan; Z.H. Li; C.S. Liu; R.J. Han; X.F. Lv; H.Q. Lu Similar experimental study of rockburst induced by mining deep coal seam under fault action, Rock Soil Mech., Volume 35 (2014) no. 9, pp. 2486-2492

[27] W. Gong; Y.Y. Peng; H. Wang; M.C. He; L. Sousa Fracture angle analysis of rock burst faulting planes based on true-triaxial experiment, Rock Mech. Rock Eng., Volume 48 (2015) no. 3, pp. 1017-1039

[28] Z.L. Li; L.M. Dou; W. Cai; G.F. Wang; H. Jiang; Y.L. Ding; Y. Kong Mechanical analysis of static stress within fault-pillars based on a voussoir beam structure, Rock Mech. Rock Eng., Volume 49 (2016) no. 3, pp. 1097-1105

[29] Y. Pan; Y. Liu; S.F. Gu Fold catastrophe model of mining fault rockburst, Chin. J. Rock Mech. Eng., Volume 20 (2001) no. 1, pp. 43-48

[30] X.B. Wang; Y.S. Pan; L. Hai Instability criterion of fault rockburst based on gradient-dependent plasticity, Chin. J. Rock Mech. Eng., Volume 23 (2004) no. 4, pp. 588-591

[31] Y.L. Huang; J.X. Zhang; B.F. An; Q. Zhang Overlying strata movement law in fully mechanized coal mining and backfilling longwall face by similar physical simulation, J. Min. Sci., Volume 47 (2011), pp. 618-627

[32] W.B. Xie; X.X. Chen; B.S. Zheng Numerical Simulation Research and Analysis of Mining Engineering Problem, China University of Mining and Technology Press, Xuzhou, 2005

[33] D.W. Zhou; K. Wu; G.L. Cheng; L. Li Mechanism of mining subsidence in coal mining area with thick alluvium soil in China, Arab. J. Geosci., Volume 8 (2014), pp. 1855-1867

[34] A. Sainoki; H.S. Mitri Methodology for the interpretation of fault-slip seismicity in a weak shear zone, J. Appl. Geophys., Volume 110 (2014), pp. 126-134

[35] M. Bischoff; A. Cete; R. Fritschen; T. Meier Coal mining induced seismicity in the Ruhr area, Germany, Pure Appl. Geophys., Volume 167 (2010) no. 1, pp. 63-75

[36] B. Domański; S.J. Gibowicz Comparison of source parameters estimated in the frequency and time domains for seismic events at the Rudna copper mine, Poland, Acta Geophys., Volume 56 (2008) no. 2, pp. 324-343

[37] S.T. Zhu; F.X. Jiang; K.J.A. Kouame; X.F. Li; W.F. Tan; B. Zhang; H. Zhang Fault activation of fully mechanized caving face in extra-thick coal seam of deep shaft, Chin. J. Rock Mech. Eng., Volume 35 (2016) no. 1, pp. 50-58

[38] J. Coggan; F.Q. Gao; D. Stead; D. Elmo Numerical modelling of the effects of weak immediate roof lithology on coal mine roadway stability, Int. J. Coal Geol., Volume 90–91 (2012) no. 1, pp. 100-109

[39] S. Shnorhokian; H.S. Mitri; D. Thibodeau Numerical simulation of pre-mining stress field in a heterogeneous rockmass, Int. J. Rock Mech. Min. Sci., Volume 66 (2014) no. 9, pp. 13-18

[40] A. Sainoki; H.S. Mitri Evaluation of fault-slip potential due to shearing of fault asperities, Can. Geotech. J., Volume 52 (2015), pp. 1417-1425

[41] G.F. Hofmann; L.J. Scheepers Simulating fault slip areas of mining induced seismic tremors using static boundary element numerical modeling, Trans. Inst. Min. Metall., Volume 120 (2015) no. 1, pp. 53-64

[42] L.S. Jiang; A. Sainoki; H.S. Mitri; N.J. Ma; H.T. Liu; Z. Hao Influence of fracture-induced weakening on coal mine gateroad stability, Int. J. Rock Mech. Min. Sci., Volume 88 (2016), pp. 307-317

[43] W. Wang; Y.P. Cheng; H.F. Wang; H.Y. Liu; L. Wang; W. Li; J.Y. Jiang Fracture failure analysis of hard-thick sandstone roof and its controlling effect on gas emission in underground ultra-thick coal extraction, Eng. Fail. Anal., Volume 54 (2015), pp. 150-162

[44] F.H. Ma; L. Sun; D. Li Numerical simulation analysis of covering rock strata as mining steep-inclined coal seam under fault movement, Trans. Nonferr. Met. Soc. China, Volume 21 (2011) no. S3, pp. 556-561

[45] Itasca Universal Distinct Element Code User's Guide (Version 4.0), Itasca Consulting Group, Minneapolis, 2005

[46] N. Barton; V. Choubey The shear strength of rock joints in theory and practice, Rock Mech., Volume 10 (1977), pp. 1-54

[47] A. Sainoki; H.S. Mitri Dynamic modelling of fault-slip with Barton's shear strength model, Int. J. Rock Mech. Min. Sci., Volume 67 (2014) no. 6, pp. 155-163

[48] G. Herget Stress assumptions for underground excavations in the Canadian shield, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., Volume 24 (1987) no. 1, pp. 95-97

[49] H.P. Kang; J. Lin; L.X. Yan; X. Zhang; Y.Z. Wu; L.P. Si Study on characteristics underground in-situ stress distribution in Shanxi coalmine fields, Chin. J. Geophys., Volume 52 (2009) no. 7, pp. 1782-1792

[50] E.T. Brown; E. Hoek Trends in relationships between measured in-situ, stresses and depth, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., Volume 15 (1978) no. 4, pp. 211-215

[51] S.M. Yang; N.B. Zhang; J. Liu; S.K. Zhao Research on mechanism of fault rock burst, Coal Sci. Technol., Volume 42 (2014) no. 10, pp. 6-9 (27)

[52] Z.H. Li; L.M. Dou; C.P. Lu; Z.L. Mu; A.Y. Cao Study on fault induced rock bursts, Int. J. Min. Sci. Technol., Volume 18 (2008) no. 3, pp. 321-326

[53] Z.H. Li Research on Rockburst Mechanism Induced by Fault Slip During Coal Mining Operation, China University of Mining and Technology, Beijing, China, 2009 (Ph.D. thesis)

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Multi-parameter monitoring of a solution mining cavern collapse: First insight of precursors

Isabelle Contrucci; Emmanuelle Klein; Ngoc-Tuyen Cao; ...

C. R. Géos (2011)


Modeling of failure characteristics of rectangular hard rock influenced by sample height-to-width ratios: A finite/discrete element approach

Fan Feng; Xibing Li; Diyuan Li

C. R. Méca (2017)


A new 3D laser-scanning and GPS combined measurement system

Liang Li; Xingyan Cao; Qiang He; ...

C. R. Géos (2019)