Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-23T16:59:13.965Z Has data issue: false hasContentIssue false

Comparison of electric field strength and spatial distribution of electroconvulsive therapy and magnetic seizure therapy in a realistic human head model

Published online by Cambridge University Press:  23 March 2020

W.H. Lee
Affiliation:
Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY10029, USA
S.H. Lisanby
Affiliation:
Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC27710, USA Department of Psychology & Neuroscience, Duke University, Durham, NC27708, USA Department of Psychiatry, Columbia University, New York, NY10032, USA National Institute of Mental Health, National Institutes of Health, Bethesda, MD20892, USA
A.F. Laine
Affiliation:
Department of Biomedical Engineering, Columbia University, New York, NY10027, USA
A.V. Peterchev*
Affiliation:
Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC27710, USA Department of Biomedical Engineering, Duke University, Durham, NC27708, USA Department of Electrical and Computer Engineering, Duke University, Durham, NC27708, USA
*
Corresponding author. Department of Psychiatry and Behavioral Sciences, Duke University, Box 3620, DUMC, Durham, NC 27710, USA. Tel.: +1 919 684 0383; fax: +1 919 681 9962. angel.peterchev@duke.edu
Get access

Abstract

Background

This study examines the strength and spatial distribution of the electric field induced in the brain by electroconvulsive therapy (ECT) and magnetic seizure therapy (MST).

Methods

The electric field induced by standard (bilateral, right unilateral, and bifrontal) and experimental (focal electrically administered seizure therapy and frontomedial) ECT electrode configurations as well as a circular MST coil configuration was simulated in an anatomically realistic finite element model of the human head. Maps of the electric field strength relative to an estimated neural activation threshold were used to evaluate the stimulation strength and focality in specific brain regions of interest for these ECT and MST paradigms and various stimulus current amplitudes.

Results

The standard ECT configurations and current amplitude of 800–900 mA produced the strongest overall stimulation with median of 1.8–2.9 times neural activation threshold and more than 94% of the brain volume stimulated at suprathreshold level. All standard ECT electrode placements exposed the hippocampi to suprathreshold electric field, although there were differences across modalities with bilateral and right unilateral producing respectively the strongest and weakest hippocampal stimulation. MST stimulation is up to 9 times weaker compared to conventional ECT, resulting in direct activation of only 21% of the brain. Reducing the stimulus current amplitude can make ECT as focal as MST.

Conclusions

The relative differences in electric field strength may be a contributing factor for the cognitive sparing observed with right unilateral compared to bilateral ECT, and MST compared to right unilateral ECT. These simulations could help understand the mechanisms of seizure therapies and develop interventions with superior risk/benefit ratio.

Type
Original article
Copyright
Copyright © European Psychiatric Association 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Weiner, R.D.Introduction to convulsive therapy. In: Reti, I.M. editor. Brain Stimulation: Methodologies and Interventions. Wiley Blackwell; 2015. p.6182.Google Scholar
Ingram, A., Saling, M.M., Schweitzer, I.Cognitive side effects of brief pulse electroconvulsive therapy: a review. J ECT 2008;24:39CrossRefGoogle ScholarPubMed
Semkovska, M., McLoughlin, D.M.Objective cognitive performance associated with electroconvulsive therapy for depression: a systematic review and meta-analysis. Biol Psychiatry 2010;68:568577CrossRefGoogle ScholarPubMed
Rasmussen, K.G.Introduction to Convulsive Therapy In: Reti, I.M. editor. Brain Stimulation: Methodologies and Interventions. Wiley Blackwell; 2015. p.83106CrossRefGoogle Scholar
Liberson, W.T.Brief stimulus therapy; psysiological and clinical observations. Am J Psychiatry 1948;105:2839CrossRefGoogle ScholarPubMed
Weiner, R.D., Rogers, H.J., Davidson, J.R., Squire, L.R.Effects of stimulus parameters on cognitive side effects. Ann N Y Acad Sci 1986;462:315325CrossRefGoogle ScholarPubMed
Sackeim, H.A., Prudic, J., Nobler, M.S., Fitzsimons, L., Lisanby, S.H., Payne, N.Effects of pulse width and electrode placement on the efficacy and cognitive effects of electroconvulsive therapy. Brain Stimul 2008;1:7183CrossRefGoogle ScholarPubMed
Cronholm, B., Ottosson, J.O.Ultrabrief stimulus technique in electroconvulsive therapy. I. Influence on retrograde amnesia of treatments with the Elther ES electroschock apparatus, Siemens Konvulsator III and of lidocaine-modified treatment. J Nerv Ment Dis 1963;137:117123CrossRefGoogle ScholarPubMed
Cronholm, B., Ottosson, J.O.Ultrabrief stimulus technique in electroconvulsive therapy. II. Comparative studies of therapeutic effects and memory disturbances in treatment of endogenous depression with the Elther ES electroshock apparatus and Siemens Konvulsator III. J Nerv Ment Dis 1963;137:268276CrossRefGoogle ScholarPubMed
Loo, C.K., Sainsbury, K., Sheehan, P., Lyndon, B.A comparison of RUL ultrabrief pulse (0.3 ms) ECT and standard RUL ECT. Int J Neuropsychopharmacol 2008;11:883890CrossRefGoogle ScholarPubMed
Sackeim, H.A., Prudic, J., Devanand, D.P., Nobler, M.S., Lisanby, S.H., Peyser, S.A prospective, randomized, double-blind comparison of bilateral and right unilateral electroconvulsive therapy at different stimulus intensities. Arch Gen Psychiat 2000;57:425434CrossRefGoogle ScholarPubMed
Deng, Z.D., Lisanby, S.H., Peterchev, A.V.Controlling stimulation strength and focality in electroconvulsive therapy via current amplitude and electrode size and spacing: comparison with magnetic seizure therapy. J ECT 2013;29:325335CrossRefGoogle ScholarPubMed
Kellner, C.H., Knapp, R., Husain, M.M., Rasmussen, K., Sampson, S.C., McClintock, M.Bifrontal, bitemporal and right unilateral electrode placement in ECT: randomised trial. Br J Psychiatry 2010;196:226234CrossRefGoogle ScholarPubMed
Nahas, Z., Short, B., Burns, C., Archer, M., Schmidt, M., Prudic, J.A feasibility study of a new method for electrically producing seizures in man: focal electrically administered seizure therapy [FEAST]. Brain Stimul 2013;6:403408CrossRefGoogle Scholar
Spellman, T., Peterchev, A.V., Lisanby, S.H.Focal electrically administered seizure therapy: a novel form of ECT illustrates the roles of current directionality, polarity, and electrode configuration in seizure induction. Neuropsychopharmacology 2009;34:20022010CrossRefGoogle ScholarPubMed
Rosa, M.A., Abdo, G.L., Rosa, M.O., Lisanby, S.H., Peterchev, A.V.Fronto-medial electrode placement with low current amplitude: a case report. J ECT 2012;28:146Google Scholar
Deng, Z.D., Lisanby, S.H., Peterchev, A.V.Electric field strength and focality in electroconvulsive therapy and magnetic seizure therapy: a finite element simulation study. J Neural Eng 2011;8:016007CrossRefGoogle ScholarPubMed
Peterchev, A.V., Rosa, M.A., Deng, Z.D., Prudic, J., Lisanby, S.H.Electroconvulsive therapy stimulus parameters: rethinking dosage. J ECT 2010;26:159174CrossRefGoogle ScholarPubMed
Liberson, W.T.Current evaluation of electric convulsive therapy; correlation of the parameters of electric current with physiologic and psychologic changes. Res Publ Assoc Res Nerv Ment Dis 1953;31:199231Google ScholarPubMed
Rosa, M.A., Abdo, G.L., Lisanby, S.H., Peterchev, A.V.Seizure induction with low-amplitude-current (0.5A) electroconvulsive therapy. J ECT 2011;27:341342CrossRefGoogle Scholar
Youssef, N.A., Sidhom, E.Examination of cognitive profile and variability in the current amplitude domain of low current amplitude ECT. Biol Psychiat 2014;75:259s260sGoogle Scholar
Mayur, P., Harris, A., Gangadhar, B.500-mA ECT-a proof of concept report. J ECT 2015;31:e23e26CrossRefGoogle ScholarPubMed
Lisanby, S.H., Luber, B., Schlaepfer, T.E., Sackeim, H.A.Safety and feasibility of magnetic seizure therapy (MST) in major depression: randomized within-subject comparison with electroconvulsive therapy. Neuropsychopharmacology 2003;28:18521865CrossRefGoogle ScholarPubMed
Fitzgerald, P.B., Hoy, K.E., Herring, S.E., Clinton, A.M., Downey, G., Daskalakis, Z.J.Pilot study of the clinical and cognitive effects of high-frequency magnetic seizure therapy in major depressive disorder. Depress Anxiety 2013;30:129136CrossRefGoogle ScholarPubMed
Kayser, S., Bewernick, B.H., Matusch, A., Hurlemann, R., Soehle, M., Schlaepfer, T.E.Magnetic seizure therapy in treatment-resistant depression: clinical, neuropsychological and metabolic effects. Psychol Med 2015;45:10731092CrossRefGoogle ScholarPubMed
Kayser, S., Bewernick, B.H., Grubert, C., Hadrysiewicz, B.L., Axmacher, N., Schlaepfer, T.E.Antidepressant effects, of magnetic seizure therapy and electroconvulsive therapy, in treatment-resistant depression. J Psychiatr Res 2011;45:569576CrossRefGoogle ScholarPubMed
Cretaz, E., Brunoni, A.R., Lafer, B.Magnetic seizure therapy for unipolar and bipolar depression: a systematic review. Neural Plast 2015;2015:521398CrossRefGoogle ScholarPubMed
Lee, W.H., Deng, Z.D., Kim, T.S., Laine, A.F., Lisanby, S.H., Peterchev, A.V.Regional electric field induced by electroconvulsive therapy in a realistic finite element head model: influence of white matter anisotropic conductivity. Neuroimage 2012;59:21102123CrossRefGoogle Scholar
Loo, C.K., Bai, S., Donel, M.M., Galvez, V., Dokos, S.Revisiting frontoparietal montage in electroconvulsive therapy: clinical observations and computer modeling: a future treatment option for unilateral electroconvulsive therapy. J ECT 2014;31:e7e13CrossRefGoogle Scholar
Bai, S., Loo, C., Dokos, S.A computational model of direct brain stimulation by electroconvulsive therapy. Conf Proc IEEE Eng Med Biol Soc 2010;2010:20692072Google ScholarPubMed
Lee, W.H., Lisanby, S.H., Laine, A.F., Peterchev, A.V.Stimulation strength and focality of electroconvulsive therapy and magnetic seizure therapy in a realistic head model. Conf Proc IEEE Eng Med Biol Soc 2014;2014:410413Google Scholar
Tustison, N.J., Avants, B.B., Cook, P.A., Zheng, Y., Egan, A., Yushkevich, P.A.N4ITK: improved N3 bias correction. IEEE Trans Med Imaging 2010;29:13101320CrossRefGoogle ScholarPubMed
Lee, W.H., Kim, T.S., Cho, M.H., Ahn, Y.B., Lee, S.Y.Methods and evaluations of MRI content-adaptive finite element mesh generation for bioelectromagnetic problems. Phys Med Biol 2006;51:61736186CrossRefGoogle ScholarPubMed
Lee, W.H., Kim, T.S.Methods for high-resolution anisotropic finite element modeling of the human head: automatic MR white matter anisotropy-adaptive mesh generation. Med Eng Phys 2012;34:8598CrossRefGoogle ScholarPubMed
Smith, S.M.Fast robust automated brain extraction. Hum Brain Mapp 2002;17:143155CrossRefGoogle ScholarPubMed
Yushkevich, P.A., Piven, J., Hazlett, H.C., Smith, R.G., Ho, S., Gee, J.C.User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 2006;31:11161128CrossRefGoogle ScholarPubMed
Zhang, Y.Y., Brady, M., Smith, S.Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans Med Imaging 2001;20:4557CrossRefGoogle ScholarPubMed
Kirov, G., Ebmeier, K.P., Scott, A.I., Atkins, M., Khalid, N., Carrick, L.Quick recovery of orientation after magnetic seizure therapy for major depressive disorder. Br J Psychiatry 2008;193:152155CrossRefGoogle ScholarPubMed
Gabriel, C., Gabriel, S., Corthout, E.The dielectric properties of biological tissues: I. Literature survey. Phys Med Biol 1996;41:22312249CrossRefGoogle ScholarPubMed
Wolters, C.H., Anwander, A., Tricoche, X., Weinstein, D., Koch, M.A., MacLeod, R.S.Influence of tissue conductivity anisotropy on EEG/MEG field and return current computation in a realistic head model: A simulation and visualization study using high-resolution finite element modeling. Neuroimage 2006;30:813826CrossRefGoogle Scholar
Awada, K.A., Jackson, D.R., Baumann, S.B., Williams, J.T., Wilton, D.R., Fink, P.W.Effect of conductivity uncertainties and modeling errors on EEG source localization using a 2-D model. IEEE Trans Biomed Eng 1998;45:11351145CrossRefGoogle ScholarPubMed
Sadleir, R.J., Vannorsdall, T.D., Schretlen, D.J., Gordon, B.Transcranial direct current stimulation (tDCS) in a realistic head model. Neuroimage 2010;51:13101318CrossRefGoogle Scholar
Hallez, H., Staelens, S., Lemahieu, I.Dipole estimation errors due to not incorporating anisotropic conductivities in realistic head models for EEG source analysis. Phys Med Biol 2009;54:60796093CrossRefGoogle Scholar
Hallez, H., Vanrumste, B., Van Hese, P., Delputte, S., Lemahieu, I.Dipole estimation errors due to differences in modeling anisotropic conductivities in realistic head models for EEG source analysis. Phys Med Biol 2008;53:18771894CrossRefGoogle ScholarPubMed
Tuch, D.S., Wedeen, V.J., Dale, A.M., George, J.S., Belliveau, J.W.Conductivity mapping of biological tissue using diffusion MRI. Ann N Y Acad Sci 1999;888:314316CrossRefGoogle ScholarPubMed
Tuch, D.S., Wedeen, V.J., Dale, A.M., George, J.S., Belliveau, J.W.Conductivity tensor mapping of the human brain using diffusion tensor MRI. Proc Natl Acad Sci U S A 2001;98:1169711701CrossRefGoogle ScholarPubMed
Pons, J.P., Segonne, E., Boissonnat, J.D., Rineau, L., Yvinec, M., Keriven, R.High-quality consistent meshing of multi-label datasets. Inf Process Med Imaging 2007;20:198210Google ScholarPubMed
Abrams, R.Electroconvulsive therapy 4th ed New York: Oxford University Press; 2002Google ScholarPubMed
Abrams, R., Taylor, M.A.Diencephalic stimulation and the effects of ECT in endogenous depression. Br J Psychiatry 1976;129:482485CrossRefGoogle ScholarPubMed
Krystal, A.D., Weiner, R.D.ECT seizure therapeutic adequacy. Convuls Ther 1994;10:153164Google ScholarPubMed
Krystal, A.D., Weiner, R.D., McCall, W.V., Shelp, F.E., Arias, R., Smith, P.The effects of ECT stimulus dose and electrode placement on the ictal electroencephalogram: an intraindividual crossover study. Biol Psychiatry 1993;34:759767CrossRefGoogle ScholarPubMed
Mayberg, H.S.Targeted electrode-based modulation of neural circuits for depression. J Clin Invest 2009;119:717725CrossRefGoogle Scholar
Mayberg, H.S., Lozano, A.M., Voon, V., McNeely, H.E., Seminowicz, D., Hamani, C.Deep brain stimulation for treatment-resistant depression. Neuron 2005;45:651660CrossRefGoogle ScholarPubMed
Sackeim, H.A.Convulsant and anticonvulsant properties of electroconvulsive therapy: towards a focal form of brain stimulation. Clin Neurosci Res 2004;4:3957CrossRefGoogle Scholar
Lisanby, S.H., Maddox, J.H., Prudic, J., Devanand, D.P., Sackeim, H.A.The effects of electroconvulsive therapy on memory of autobiographical and public events. Arch Gen Psychiatry 2000;57:581590CrossRefGoogle ScholarPubMed
Squire, L.R., Slater, P.C., Miller, P.L.Retrograde-amnesia and bilateral electroconvulsive-therapy - long-term follow-up. Arch Gen Psychiat 1981;38:8995CrossRefGoogle ScholarPubMed
Blumenfeld, H., Westerveld, M., Ostroff, R.B., Vanderhill, S.D., Freeman, J., Necochea, A.Selective frontal, parietal, and temporal networks in generalized seizures. Neuroimage 2003;19:15561566CrossRefGoogle ScholarPubMed
Sackeim, H.A., Mukherjee, S.Neurophysiological variability in the effects of the ECT stimulus. Convuls Ther 1986;2:267276Google Scholar
Talairach, J., Tournoux, P.Co-planar stereotaxic atlas of the human brain: 3-dimensional proportional system: an approach to cerebral imaging Stuttgart; New York: Georg Thieme; 1988Google Scholar
Tu, Z., Narr, K.L., Dollar, P., Dinov, I., Thompson, P.M., Toga, A.W.Brain anatomical structure segmentation by hybrid discriminative/generative models. IEEE Trans Med Imaging 2008;27:495508Google ScholarPubMed
Patenaude, B., Smith, S.M., Kennedy, D.N., Jenkinson, M.A Bayesian model of shape and appearance for subcortical brain segmentation. Neuroimage 2011;56:907922CrossRefGoogle ScholarPubMed
Pitcher, J.B., Ogston, K.M., Miles, T.S.Age and sex differences in human motor cortex input-output characteristics. J Physiol 2003;546:605613CrossRefGoogle ScholarPubMed
Lee, W.H., Lisanby, S.H., Laine, A.F., Peterchev, A.V.Electric field model of transcranial electric stimulation in nonhuman primates: correspondence to individual motor threshold. IEEE Trans Biomed Eng 2015CrossRefGoogle ScholarPubMed
Thielscher, A., Opitz, A., Windhoff, M.Impact of the gyral geometry on the electric field induced by transcranial magnetic stimulation. Neuroimage 2011;54:234243CrossRefGoogle ScholarPubMed
Peterchev, A.V., Krystal, A.D., Rosa, M.A., Lisanby, S.H.Individualized low-amplitude seizure therapy: minimizing current for electroconvulsive therapy and magnetic seizure therapy. Neuropsychopharmacology 2015;40:20762084CrossRefGoogle ScholarPubMed
Sienaert, P., Vansteelandt, K., Demyttenaere, K., Peuskens, J.Randomized comparison of ultra-brief bifrontal and unilateral electroconvulsive therapy for major depression: cognitive side-effects. J Affect Disord 2010;122:6067CrossRefGoogle ScholarPubMed
McNally, K.A., Blumenfeld, H.Focal network involvement in generalized seizures: new insights from electroconvulsive therapy. Epilepsy Behav 2004;5:312CrossRefGoogle ScholarPubMed
Reti, I.M.How does electroconvulsive therapy work? In: Reti, I.M., editor. Brain stimulation: methodologies and interventions. Wiley Blackwell; 2015. 107122Google Scholar
Jalinous, R.Technical and practical aspects of magnetic nerve stimulation. J Clin Neurophysiol 1991;8:1025CrossRefGoogle ScholarPubMed
Regenold, W.T., Noorani, R.J., Piez, D., Patel, P.Nonconvulsive electrotherapy for treatment resistant unipolar and bipolar major depressive disorder: a proof-of-concept trial. Brain Stimul 2015;8:855861CrossRefGoogle ScholarPubMed
Sackeim, H.A.Is the seizure an unnecessary component of electroconvulsive therapy? A startling possibility. Brain Stimul 2015;8:851854CrossRefGoogle ScholarPubMed
Deng, Z.D., Lisanby, S.H., Peterchev, A.V.Effect of anatomical variability on electric field characteristics of electroconvulsive therapy and magnetic seizure therapy: a parametric modeling study. IEEE Trans Neural Syst Rehabil Eng 2015;23:2231CrossRefGoogle ScholarPubMed
Lee, W.H., Lisanby, S.H., Laine, A.F., Peterchev, A.V.Electric field characteristics of electroconvulsive therapy with individualized current amplitude: a preclinical study. Conf Proc IEEE Eng Med Biol Soc 2013;2013:30823085Google ScholarPubMed
Submit a response

Comments

No Comments have been published for this article.