On the ballistic resistance of double-layered steel plates: An experimental and numerical investigation

https://doi.org/10.1016/j.ijsolstr.2007.03.005Get rights and content
Under an Elsevier user license
open archive

Abstract

Civil and military ballistic protection systems often consist of thin, high-strength steel plates. Such plates may either be monolithic or layered with or without spacing. The idea of using layered plates instead of a monolithic one in order to increase the ballistic perforation resistance is not new, and the effect of using targets made up of several thinner plates has been investigated in the literature for a long time. However, results by various authors are contradicting and detailed experimental and numerical work is still required.

In the present study, the ballistic perforation resistance of double-layered steel plates impacted by blunt and ogival projectiles was investigated both experimentally and numerically. In the tests, 12 mm thick (monolithic or layered) targets of Weldox 700 E were impacted using a gas-gun at sub-ordnance velocity, and the ballistic limit velocity of the different target combinations was obtained. In general, good agreement was obtained between the numerical simulations and the experimental results. It was found that in the case of blunt projectiles a large gain in the ballistic limit is offered by double-layered systems. These advantages seem to disappear when ogival projectiles are used. However, the main conclusion from both the experimental and numerical studies is that the overall protection level, i.e. the minimum ballistic limit velocity obtained independently of projectile nose shape, seems to increase significantly by double-layering the target.

Keywords

High-strength steel
Ballistic penetration
Layered target
Experimental tests
LS-DYNA

Cited by (0)