J Appl Biomed 13:239-248, 2015 | DOI: 10.1016/j.jab.2015.03.004

Self-assembly of carrageenin-CaCO3 hybrid microparticles on bacterial cellulose films for doxorubicin sustained delivery

Maximiliano L. Cacicedoa, Karina Cescab, Valeria E. Bosioa, Luismar M. Portob, Guillermo R. Castroa,*
a Nanobiomaterials Laboratory, Institute of Applied Biotechnology (CINDEFI, CONICET CCT La Plata), Department of Chemistry, School of Sciences, Universidad Nacional de La Plata, Calle 47 y 115, CP 1900, Ciudad de La Plata, Argentina
b Integrated Technologies Laboratory (InteLAB), CTC/EQA, Universidad Federal de Santa Catarina, Florianopolis, Brazil

Stereospecific nucleation of mesoporous hybrid microspheres composed of CaCO3 and carrageenan was appended to one side of bacterial cellulose membrane synthesized in static cultures of Gluconacetobacter hansenii to develop an implantable drug delivery device. The synthesis of the hybrid microparticles proceeds by self-assembly mechanism in the presence of calcium and contains tailorable amounts of doxorubicin. However, in the absence of the particles, doxorubicin was distributed along the BC film, but without control release of drug. Infrared spectroscopy, confocal and scanning electron microscopies analyses demonstrate that the doxorubicin is entrapped inside the hybrid particles with approximately 80% drug loading compared to the 11% obtained for native bacterial cellulose. Doxorubicin content in the hybrid particles can be increased by a factor of 10 (from 258.6 to 2586.3 nmol ml-1), and also by the quantities of particles regulated by the CaCO3-carrageenan content and the physicochemical microenvironment. The hybrid BC system can be considered as smart device since the kinetic release of doxorubicin from the hybrid cellulose system rise from 1.50 to 2.75 μg/membrane/day when the pH decreases from 7.4 to 5.8 at 37 °C, a pathologic simulated environment. The hybrid microparticle system can be potentially used as an implantable drug delivery system for personalized oncological therapies.

Keywords: Self-assembly; Nanocomposites; Hybrid microparticles; Bacterial cellulose; Doxorubicin; Smart chemotherapy

Received: November 13, 2014; Revised: March 6, 2015; Accepted: March 9, 2015; Published: July 1, 2015  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Cacicedo ML, Cesca K, Bosio VE, Porto LM, Castro GR. Self-assembly of carrageenin-CaCO3 hybrid microparticles on bacterial cellulose films for doxorubicin sustained delivery. J Appl Biomed. 2015;13(3):239-248. doi: 10.1016/j.jab.2015.03.004.
Download citation

References

  1. Almeida, I.F., Pereira, T., Silva, N.H., Gomes, F.P., Silvestre, A.J., Freire, C.S., Sousa Lobo, J.M., Costa, P.C., 2014. Bacterial cellulose membranes as drug delivery systems: an in vivo skin compatibility study. Eur. J. Pharm. Biopharm. 86, 332-336. Go to original source... Go to PubMed...
  2. Anon., 2013. Paving the way for personalized medicine. In: FDA Report..
  3. Barud, H.S., Regiani, T., Marques, R.F.C., Lustri, W.R., Messaddeq, Y., Ribeiro, S.J., 2011. Antimicrobial bacterial cellulose-silver nanoparticles composite membranes. J. Nanomater. 11, http://dx.doi.org/10.1155/2011/721631. Go to original source...
  4. Beuvier, T., Calvignac, B., Delcroix, G., Tran, M.K., Kodjikian, S., Delorme, N., Bardeau, J.F., Gibauda, A., Boury, F., 2011. Synthesis of hollow vaterite CaCO3 microspheres in supercritical carbon dioxide medium. J. Mater. Chem. 21, 9757-9761. Go to original source...
  5. Brito, M., Case, E., Kriven, W.M., Salem, J., Zhu, D., 2009. Use of vaterite and calcite in forming calcium phosphate cement scaffolds. Developments in porous, biological and geopolymer ceramics. Ceram. Eng. Sci. Proc. 28 (9),, http://dx.doi.org/10.1002/9780470339749.ch14. Go to original source...
  6. Bosio, V.E., Cacicedo, M.L., Calvignac, B., Leon, I., Beuvier, T., Boury, F., Castro, G.R., 2014. Synthesis and characterization of CaCO3-biopolymer hybrid nanoporous microparticles for controlled release of doxorubicin. Colloids Surf. B: Biointerfaces 123, 158-169. Go to original source... Go to PubMed...
  7. Cai, Z.J., Hou, C.W., Yang, G., 2011. Preparation and characterization of a bacterial cellulose/chitosan composite for potential biomedical application. J. Appl. Polym. Sci. 1213, 1488-1494. Go to original source...
  8. Campo, V.L., Kawano, D.F., Braz da Silva Jr., D., Carvalho, I., 2009. Carageenans: biological properties, chemical modifications and structural analysis - a review. Carbohydr. Polym. 77, 167-180. Go to original source...
  9. Chiaoprakobkij, N., Sanchavanakit, N., Subbalekha, K., Pavasant, P., Phisalaphong, M., 2011. Characterization and biocompatibility of bacterial cellulose/alginate composite sponges with human keratinocytes and gingival fibroblasts. Carbohydr. Polym. 853, 548-553. Go to original source...
  10. Duran Lopes, T., Riegel-Vidotti, I.C., Grein, A., Tischer, C.A., de Sousa Faria-Tischer, P.C., 2014. Bacterial cellulose and hyaluronic acid hybrid membranes: production and characterization. Int. J. Biol. Macromol. 67, 401-408. Go to original source... Go to PubMed...
  11. Fernandes, S.C.M., Oliveira, L., Freire, C.S.R., Silvestre, A.J.D., Neto, C.P., Gandini, A., 2009. Novel transparent nanocomposite films based on chitosan and bacterial cellulose. Green Chem. 11, 2023-2029. Go to original source...
  12. Gerweck, L.E., Vijayappa, S., Kozin, S., 2006. Tumor pH controls the in vivo efficacy of weak acid and base chemotherapeutics. Mol. Cancer Ther. 5, 1275-1279. Go to original source... Go to PubMed...
  13. Helenius, G., Bäckdahl, H., Bodin, A., Nannmark, U., Gatenholm, P., Risberg, B., 2006. In vivo biocompatibility of bacterial cellulose. J. Biomed. Mater. Res. A 76, 431-438. Go to original source... Go to PubMed...
  14. Islan, G.A., Cacicedo, M.L., Bosio, V.E., Castro, G.R., 2014. Development and characterization of new enzymatic modified hybrid CaCO3 microparticles to obtain nanoarchitectured surfaces for enhanced drug loading. J. Colloid Interface Sci. 439, 76-87. Go to original source... Go to PubMed...
  15. Kapuscinski, J., Ardelt, B., Piosik, J., Zdunek, M., Darzynkiewicz, Z., 2002. The modulation of the DNA-damaging effect of polycyclic aromatic agents by xanthines. Part I. Reduction of cytostatic effects of quinacrine mustard by caffeine. Biochem. Pharmacol. 63, 625-634. Go to original source... Go to PubMed...
  16. Liu, X., Ma, Y., Zhou, Y., Pei, C., Yin, G., 2013. A promising hybrid scaffold material: bacterial cellulose in-situ assembling biomimetic lamellar CaCO3. Mater. Lett. 102-103, 91-93. Go to original source...
  17. Petersen, N., Gatenholm, P., 2011. Bacterial cellulose-based materials and medical devices: current state and perspectives. Appl. Microbiol. Biotechnol. 91, 1277-1286. Go to original source... Go to PubMed...
  18. Seib, F.P., Kaplan, D.L., 2012. Doxorubicin-loaded silk films: drugsilk interactions and in vivo performance in human orthotopic breast cancer. Biomaterials 33, 8442-8450. Go to original source... Go to PubMed...
  19. Song, G., Darr, D.B., Santos, C.M., Ross, M., Valdivia, A., Jordan, J. L., Midkiff, B.R., Cohen, S., Nikolaishvili-Feinberg, N., Miller, C.R., Tarrant, T.K., Rogers, A.B., Dudley, A.C., Perou, C.M., Zamboni, W.C., 2014. Tumor micro-environment is a rough neighborhood for nanoparticle cancer drugs. Clin. Cancer Res. 20, 6083-6095. Go to original source... Go to PubMed...
  20. Stoica-Guzun, A., Stroescu, M., Jinga, S.I., Jipa, I.M., Dobre, T., 2013. Microwave assisted synthesis of bacterial cellulosecalcium carbonate composites. Ind. Crops Prod. 50, 414-422. Go to original source...
  21. Svensson, A., Nicklasson, E., Harrah, T., Panilaitis, B., Kaplan, D. L., Brittberg, M., Gatenholm, P., 2005. Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials 26, 419-431. Go to original source... Go to PubMed...
  22. Tacar, O., Sriamornsak, P., Dass, C.R., 2012. Doxorubicin: an update on anticancer molecular action, toxicity and novel drug delivery systems. J. Pharm. Pharmacol. 65, 157-170. Go to original source... Go to PubMed...
  23. Wolinsky, J.B., Colson, Y.L., Grinstaff, M.W., 2012. Local drug delivery strategies for cancer treatment: gels, nanoparticles, polymeric films, rods, and wafers. J. Control. Release 159, 14-26. Go to original source... Go to PubMed...