J Appl Biomed 15:15-21, 2017 | DOI: 10.1016/j.jab.2016.09.003

Deagglomeration and characterization of detonation nanodiamonds for biomedical applications

Seidy Pedroso-Santanaa,*, Andrei Sarabia-Saínza, Noralvis Fleitas-Salazara, Karla Santacruz-Gómezb, Monica Acosta-Elíasb, Martin Pedroza-Monteroa, Raul Rieraa
a Departamento de Investigación en Física, Universidad de Sonora, Apartado postal 5-088, Hermosillo, C.P. 83190, Mexico
b Departamento de Física, Universidad de Sonora, Hermosillo, Apartado postal 1626, C.P. 83000, Mexico

Detonation nanodiamonds (DNDs) are usually small particles of 4-5 nm, but in aqueous suspension, DNDs form agglomerates in sizes larger than 1 μm. We propose the use of Bead Assisted Sonic Disintegration and a carboxylation procedure, to reduce DNDs aggregates sizes to approximately 100 nm. High cost zirconium beads have been substituted by silica beads synthetized in our laboratory and less-time consuming conditions were standardized. Techniques as Dynamic Light Scattering (DLS), Fourier Transform InfraRed Spectroscopy (FTIR), Transmission Electron Microscopy (TEM) and X-ray Photoelectron Spectroscopy (XPS), have been used to characterize the resulting diamond nanoparticles. While the incubation of Red Blood Cells with partially disaggregated DNDs was used to study whether these nanodiamonds impact in a living system. Our results show the absence of a negative effect in cell viability as well as no differences between Raman spectra of hemoglobin (Hb), from control and cell + DNDs conditions.

Keywords: Nanodiamond; Deagglomeration; Carboxylation; Raman; RBC

Received: April 21, 2016; Accepted: September 22, 2016; Published: January 1, 2017  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Pedroso-Santana S, Sarabia-Saínz A, Fleitas-Salazar N, Santacruz-Gómez K, Acosta-Elías M, Pedroza-Montero M, Riera R. Deagglomeration and characterization of detonation nanodiamonds for biomedical applications. J Appl Biomed. 2017;15(1):15-21. doi: 10.1016/j.jab.2016.09.003.
Download citation

References

  1. Acosta-Elías, M., Sarabia-Sainz, A., Pedroso-Santana, S., Silva-Campa, E., SantacruzGomez, K., Angulo-Molina, A., Castaneda, B., Soto-Puebla, D., Barboza-Flores, M., Melendrez, R., Álvarez-García, S., Pedroza-Montero, M., 2015. Carboxylated nanodiamond and re-oxygenation process of gamma irradiated red blood cell. Phys. Status Solidi A 212, 2437-2444. Go to original source...
  2. Aleksenskiy, A.E., Eydelman, E.D., Vul, A. Ya., 2011. Deagglomeration of Detonation Nanodiamonds. Nanosci. Nanotechnol. Lett. 3, 68-74. Go to original source...
  3. Chao, J.-I., Perevedentseva, E., Chung, P.-H., Liu, K.-K., Cheng, Ch. -Y., Chang, Ch.-Ch., Cheng, Ch.-L., 2007. Nanometer-sized diamond particle as a probe for biolabeling. Biophys. J. 93, 2199-2208. Go to original source... Go to PubMed...
  4. Faklaris, O., Joshi, V., Irinopoulou, T., Tauc, P., Girard, H., Gesset, C., Senour, M., Thorel, A., Arnault, J., Ch Boudou, J.P., Curmi, P.A., Treussart, F., 2009. Photoluminescent diamond nanoparticles for cell labeling: study of the uptake mechanism in mammalian cells. ACS Nano 3, 3955-3962. Go to original source... Go to PubMed...
  5. Hsin, Y.L., Chu, H.-Y., Jeng, Y.-R., Huang, Y.-H., Wanga, M.H., Changa, K. Ch., 2011. In situ deagglomeration and surface functionalization of detonation nanodiamond, with the polymer used as an additive in lubricant oil. J. Mater. Chem. 21, 13213-13222. Go to original source...
  6. Kaur, R., Badea, I., 2013. Nanodiamonds as novel nanomaterials for biomedical applications: drug delivery and imaging systems. Int. J. Nanomed. 8, 203-220. Go to original source... Go to PubMed...
  7. Kirby, B.J., Hasselbrink Jr., E.F., 2004. Zeta potential of microfluidic substrates: 1. Theory, experimental techniques, and effectson separations. Electrophoresis 25, 187-202. Go to original source... Go to PubMed...
  8. Krueger, A., Boedeker, T., 2008. Deagglomeration and functionalisation of detonation nanodiamond with long alkyl chains. Diamond Relat. Mater. 17, 1367-1370. Go to original source...
  9. Kruger, A., Kataoka, F., Ozawa, M., Fujino, T., Suzuki, Y., Aleksenskii, A.E., Vul, A. Ya., Osawa, E., 2005. Unusually tight aggregation in detonation nanodiamond: identification and disintegration. Carbon 43, 1722-1730. Go to original source...
  10. Lin, Y.-Ch., Tsai, L.-W., Perevedentseva, E., Chang, H.-H., Lin, Ch.-H., Sun, D.-Sh., Lugovtsov, A.E., Priezzhev, A., Mona, J., Cheng, Ch.-L., 2012. The influence of nanodiamond on the oxygenation states and micro rheological properties of human red blood cells in vitro. J. Biomed. Opt. 17, 101512. Go to original source... Go to PubMed...
  11. Liu, K.-K., Cheng, Ch.-L., Chang, Ch.-Ch., Chao, J.-I., 2007. Biocompatible and detectable carboxylated nanodiamond on human cell. Nanotechnology 18, 325102. Go to original source...
  12. Liu, K.K., Wang, C.C., Cheng, C.L., Chao, J.I., 2009. Endocytic carboxylated nanodiamond for the labeling and tracking of cell division and differentiation in cancer and stem cells. Biomaterials 30, 4249-4259. Go to original source... Go to PubMed...
  13. Man, H.B., Ho, D., 2012. Diamond as a nanomedical agent for versatile applications in drug delivery, imaging, and sensing. Phys. Status Solidi A 209, 1609-1618. Go to original source...
  14. Mochalin, V.N., Shenderova, O., Ho, D., Gogotsi, Y., 2012. The properties and applications of nanodiamonds. Nat. Nanotechnol. 7, 11-23. Go to original source... Go to PubMed...
  15. Ozawa, M., Inaguma, M., Takahashi, M., Kataoka, F., Krüger, A., Osawa, E., 2007. Preparation and behavior of brownish. Clear Nanodiamond Colloids Adv. Mater. 19, 1201-1206. Go to original source...
  16. Panich, A.M., Aleksenskii, A.E., 2012. Disagregation of diamond nanoparticles studied by NMR. Diamond Relat. Mater. 27-28, 45-48. Go to original source...
  17. Pentecost, A., Gour, S., Mochalin, V., Knoke, I., Gogotsi, Y., 2010. Disagregation of nanodiamond powders using salt- and sugar-assisted milling. ACS Appl. Mater. Interfaces 2, 3289-3294. Go to original source... Go to PubMed...
  18. Rao, K.S., El-Hami, K., Kodaki, T., Matsushige, K., Makino, K., 2005. A novel method for synthesis of silica nanoparticles. J. Colloid Interface Sci. 289, 125-131. Go to original source... Go to PubMed...
  19. Russo, L., Colangelo, F., Cioffi, R., Rea, I., De Stefano, L., 2011. A mechanochemical approach to porous silicon nanoparticles fabrication. Materials 4, 1023-1033. Go to original source... Go to PubMed...
  20. Strober, W., 2001. Trypan blue exclusion test of cell viability. Curr. Adv. Immunol. 21:3B:A.3B.1-A.3B.2. Go to original source... Go to PubMed...
  21. Tu, J.-S., Perevedentseva, E., Chung, P.-H., Cheng, C.-L., 2006. Size-dependent surface CO stretching frequency investigations on nanodiamond particles. J. Chem. Phys. 125, 174713. Go to original source... Go to PubMed...
  22. Wood, B.R., McNaughton, D., 2002. Raman excitation wavelength investigation of singlered blood cells in vivo. J. Raman Spectrosc. 33, 517-523. Go to original source...