Elsevier

Physics Reports

Volume 457, Issues 1–4, February 2008, Pages 1-216
Physics Reports

The anatomy of electroweak symmetry breaking: Tome I: The Higgs boson in the Standard Model

https://doi.org/10.1016/j.physrep.2007.10.004Get rights and content

Abstract

This review is devoted to the study of the mechanism of electroweak symmetry breaking and this first part focuses on the Higgs particle of the Standard Model. The fundamental properties of the Higgs boson are reviewed and its decay modes and production mechanisms at hadron colliders and at future lepton colliders are described in detail.

  1. Download : Download full-size image

Section snippets

A short praise of the Standard Model

The end of the last millennium witnessed the triumph of the Standard Model (SM) of the electroweak and strong interactions of elementary particles [1], [2]. The electroweak theory, proposed by Glashow, Salam and Weinberg [1] to describe the electromagnetic [3] and weak [4] interactions between quarks and leptons, is based on the gauge symmetry group SU(2)L×U(1)Y of weak left-handed isospin and hypercharge. Combined with Quantum Chromodynamics (QCD) [2], the theory of the strong interactions

The SM of the strong and electroweak interactions

In this section, we present a brief introduction to the Standard Model of the strong and electroweak interactions and to the mechanism of electroweak symmetry breaking. This will allow us to set the stage and to fix the notation which will be used later on. For more detailed discussions, we refer the reader to standard textbooks [17] or reviews [18].

Decays of the SM Higgs boson

In the Standard Model, once the Higgs mass is fixed, the profile of the Higgs particle is uniquely determined. The Higgs couplings to gauge bosons and fermions are directly proportional to the masses of the particles and the Higgs boson will have the tendency to decay into the heaviest ones allowed by phase space. Since the pole masses of the gauge bosons and fermions are known [the electron and light quark masses are too small to be relevant] MZ=91.187GeV,MW=80.425GeV,mτ=1.777GeV,mμ=0.106GeV,mt

Generalities about hadron colliders

The pp̄ collider19 Tevatron at Fermilab is the highest-energy accelerator available today. In the previous Run I, the collider was operating at an energy of s=1.8 TeV in the pp̄ center of mass, and from both the CDF and DØ experiments data corresponding to about Ldt100pb1 of integrated luminosity has been collected.20

Generalities about e+e colliders

The e+e collision [452] is a very simple reaction, with a well-defined initial state and rather simple topologies in the final state. It has a favorable signal to background ratio, leading to a very clean experimental environment which allows one to easily search for new phenomena and to perform very high-precision studies as has been shown at PEP/PETRA/TRISTAN and more recently at SLC and LEP. In particular, the high-precision studies of the properties of the Z boson at LEP1 and SLC, and the

Summary

The search for Higgs bosons is the main mission of present and future high-energy colliders. The observation of these particles is of major importance for the present understanding of the interactions of the fundamental particles and the generation of their masses. In fact, despite its numerous successes in explaining the present data, our Standard Model of the electroweak and strong forces will not be completely validated before this particle has been experimentally observed and its predicted

Acknowledgments

I would first like to thank the many collaborators with whom I shared the pleasure in investigating various aspects of the theme discussed in this review. They are too numerous to be all listed here, but I would like at least to mention Peter Zerwas with whom I started to work on the subject in an intensive way.

I would also like to thank the many colleagues and friends who helped me during the writing of this review and who made important remarks on the preliminary versions of the manuscript

References (603)

  • S. Glashow

    Nuclear Phys.

    (1961)
    S. Weinberg

    Phys. Rev. Lett.

    (1967)
    A. Salam
  • E. Fermi

    Nuovo Cim.

    (1934)
    E. Fermi

    Z. Phys.

    (1934)
    R. Feynman et al.

    Phys. Rev.

    (1958)
  • P.W. Higgs

    Phys. Rev. Lett.

    (1964)
    P.W. Higgs

    Phys. Rev.

    (1966)
    F. Englert et al.

    Phys. Rev. Lett.

    (1964)
    G.S. Guralnik et al.

    Phys. Rev. Lett.

    (1965)
    T. Kibble

    Phys. Rev.

    (1967)
  • See for instance: W.J. Stirling, Higgs Phenomenology, Lectures given at “42nd Scottish Universities Summer School in...M.E. Peskin, Beyond the Standard Model, Lectures given at the European School of High-Energy Physics, Carry-le-Rouet...S. Dawson, Introduction to Electroweak Symmetry Breaking, Lectures given at “ICTP Summer School in High-Energy Physics...M. Spira, P.M. Zerwas, Electroweak symmetry breaking and Higgs Physics, Lectures given at “36th Internationale...C. Quigg

    Electroweak Symmetry breaking and the Higgs sector

    27th International Meeting on Fundamental Physics, Sierra Nevada, Granada (Spain), February 1999

    Acta Phys. Polon.

    (1999)
  • A. Djouadi

    Internat. J. Modern Phys. A

    (1995)
  • S.L. Adler et al.

    Phys. Rev.

    (1969)
    R. Jackiw

    Lectures on Current Algebra and its Applications

    (1972)
  • C. Bouchiat et al.

    Phys. Lett.

    (1972)
  • T. Appelquist et al.

    Phys. Rev. D

    (1975)
  • M. Davier et al.

    Phys. Lett. B

    (1998)
    J. Erler

    Phys. Rev. D

    (1999)
    F. Jegerlehner....K. Hagiwara et al.

    Phys. Rev. D

    (2004)
  • H. Burkhardt et al.

    Phys. Lett. B

    (2001)
  • R.E. Behrends et al.

    Phys. Rev.

    (1956)
    T. Kinoshita et al.

    Phys. Rev.

    (1959)
    T. van Ritbergen et al.

    Phys. Rev. Lett.

    (1999)
  • For reviews, see e.g.: G. Altarelli, A QCD Primer, in: 2001 European School of High-Energy Physics, Beatenberg, Aug–Sep...S. Bethke

    J. Phys. G

    (2000)
    S. Bethke

    Nucl. Phys. Proc. Suppl.

    (2003)
    I. Hinchliffe in...
  • O. Tarasov et al.

    Phys. Lett. B

    (1980)
    S.A. Larin et al.

    Phys. Lett. B

    (1993)
  • G. Altarelli et al.

    Nuclear Phys. B

    (1979)
    J. Kubar–André et al.

    Phys. Rev. D

    (1979)
  • D. Ross et al.

    Nuclear Phys. B

    (1975)
  • Z Physics at LEP1, Eds. G. Altarelli, R. Kleiss and C. Verzegnassi. CERN Report 89–08 (1989), See this reference for...
  • A. Sirlin

    Phys. Rev. D

    (1980)
    W. Marciano et al.

    Phys. Rev. D

    (1980)
    W. Marciano et al.

    Phys. Rev. D

    (1984)
    W. Marciano et al.

    Nuclear Phys. B

    (1981)
  • W. Hollik

    Fortsch. Phys.

    (1990)
  • For a review, see, M. Chanowitz, published in Zeuthen 2003, Electroweak precision data and the Higgs mass, p. 15–24....
  • M. Peskin et al.

    Phys. Rev. D

    (2001)
  • D.R.T. Jones et al.

    Phys. Lett. B

    (1979)
  • B.L. Joffe et al.

    Sov. J. Part. Phys.

    (1978)
    E. Ma et al.

    Phys. Rev. D

    (1979)
    J. Finjord

    Phys. Scripta

    (1980)
  • M. Gell-Mann

    Phys. Lett.

    (1964)
    G. Zweig, CERN-Report 8182/TH401...H. Fritzsch et al.

    Phys. Lett. B

    (1973)
    D. Gross et al.

    Phys. Rev. Lett.

    (1973)
    H.D. Politzer

    Phys. Rev. Lett.

    (1973)
    G. ’t Hooft, Marseille Conference on Yang–Mills Fields,...
  • P.A.M. Dirac

    Proc. Roy. Soc. Lond. A

    (1927)
    P. Jordan et al.

    Z. Phys.

    (1928)
    W. Heisenberg et al.

    Z. Phys.

    (1929)
    S. Tomonaga

    Progr. Theoret. Phys.

    (1946)
    J. Schwinger

    Phys. Rev.

    (1948)
    R. Feynman

    Phys. Rev.

    (1949)
  • G. ’t Hooft

    Nuclear Phys. B

    (1971)
    G. ’t Hooft

    Nuclear Phys. B

    (1971)
    G. ’t Hooft et al.

    Nuclear Phys. B

    (1972)
  • Ch. Llewellyn Smith

    Phys. Lett.

    (1973)
    J.S. Bell

    Nuclear Phys. B

    (1973)
    J.M. Cornwall et al.

    Phys. Rev. Lett.

    (1973)
    J.M. Cornwall et al.

    Phys. Rev. D

    (1974)
    J.M. Cornwall et al.

    Phys. Rev. D

    (1975)
  • The LEP Collaborations (ALEPH, DELPHI, L3 and OPAL), the LEP Electroweak Working Group and the SLD Heavy Flavour Group,...
  • K. Hagiwara

    Phys. Rev. D

    (2002)
    S. Eidelman

    Phys. Lett. B

    (2004)
  • Phys. Lett. B

    (2003)
  • F.J. Hasert

    Phys. Lett. B

    (1973)
    F.J. Hasert

    Phys. Lett. B

    (1973)
    T. Eichten

    Phys. Lett. B

    (1973)
  • G. Arnison

    Phys. Lett. B

    (1983)
    M. Banner

    Phys. Lett. B

    (1983)
    G. Arnison

    Phys. Lett. B

    (1983)
    P. Bagnaia

    Phys. Lett. B

    (1983)
  • J. Gunion et al.

    The Higgs Hunter’s Guide

    (1990)
  • F. Abe

    Phys. Rev. Lett.

    (1995)
    S. Abachi

    Phys. Rev. Lett.

    (1995)
  • CDF and DØ Coll. and Tevatron Electroweak Working Group....
  • CDF and DØ Coll. and Tevatron Electroweak Working Group....
  • I. Aitchison et al.

    Gauge Theories in Particle Physics

    (1982)
    C. Quigg

    Gauge Theories of the Strong, Weak, and Electromagnetic Interactions

    (1983)
    T.P. Cheng et al.

    Gauge theory of Elementary Particle Physics

    (1984)
    F. Halzen et al.

    Quarks and Leptons: An Introductory Course in Modern Particle Physics

    (1984)
    C. Itzykson et al.

    Quantum Field Theory

    (1985)
    D. Bailin et al.

    Introduction to Gauge Field Theory

    (1986)
    M.E. Peskin et al.

    An Introduction to Quantum Field Theory

    (1995)
  • E. Abers et al.

    Phys. Rep.

    (1973)
    M.A.B. Beg et al.

    Phys. Rep.

    (1982)
    C. Quigg, Introduction to gauge theories of the strong, weak and electromagnetic interactions, Lectures given at “NATO...R.N. Cahn

    Rep. Progr. Phys.

    (1989)
    M.E. Peskin, Theory of precision electroweak mesurements, Lectures given at “17th SLAC Summer Inst.: Physics at the...H.E. Haber, Lectures on Electroweak Symmetry Breaking, TASI, Boulder 1990,...F.M. Renard

    Standardissimo

    Annales Phys. (France)

    (1992)
    G. Altarelli, The standard electroweak theory and its experimental tests, Lectures given at “32nd Internationale...P. Langacker, Tests of the Standard Model and searches for New Physics, in: Precision tests of the standard electroweak...S.F. Novaes, Standard model: An introduction, in: Proceedings of the “10th Jorge Andre Swieca Summer School: Particle...H. Spiesberger et al.

    The standard model: Physical basis and scattering experiments

    A. Pich, The Standard Model of Electroweak Interactions, Lectures given at the “2004 European School of High-Energy...
  • B.A. Kniehl

    Phys. Rep.

    (1994)
  • M. Spira

    Fortschr. Phys.

    (1998)
  • M. Steinhauser

    Phys. Rep.

    (2002)
  • M. Carena et al.

    Prog. Part. Nucl. Phys.

    (2003)
  • A. Djouadi, The anatomy of electro-weak symmetry breaking, II: The Higgs bosons in the minimal supersymmetric model....
  • C.N. Yang et al.

    Phys. Rev.

    (1954)
  • Y. Nambu

    Phys. Rev. Lett.

    (1960)
    Y. Nambu et al.

    Phys. Rev.

    (1961)
    Y. Nambu et al.

    Phys. Rev.

    (1961)
    J. Goldstone

    Nuov. Cim.

    (1961)
    J. Goldstone et al.

    Phys. Rev.

    (1962)
  • K. Fujikawa et al.

    Phys. Rev. D

    (1972)
    Y.P. Yao

    Phys. Rev. D

    (1973)
    G. ’t Hooft in...
  • M. Chanowitz et al.

    Phys. Lett.

    (1984)
    M. Chanowitz et al.

    Nuclear Phys. B

    (1985)
  • B.W. Lee et al.

    Phys. Rev. D

    (1977)
  • C.E. Vayonakis

    Lett. Nuovo Cim.

    (1976)
    H. Weldon

    Phys. Lett.

    (1984)
    G.J. Gounaris et al.

    Phys. Rev. D

    (1986)
    Y.P. Yao et al.

    Phys. Rev. D

    (1988)
    W. Marciano et al.

    Phys. Rev. D

    (1989)
    J. Bagger et al.

    Phys. Rev. D

    (1990)
    H. Veltman

    Phys. Rev. D

    (1990)
  • G. Källén et al.

    Vidensk. Selsk. Mat.-Fys. Medd.

    (1955)
    M. Steinhauser

    Phys. Lett. B

    (1998)
  • S.D. Drell et al.

    Phys. Rev. Lett.

    (1970)
  • Cited by (0)

    View full text