Skip to main content
Log in

The proper place of hopeful monsters in evolutionary biology

  • Special Papers: From Evolutionary Morphology to the Modern Synthesis and “Evo-Devo”
  • Published:
Theory in Biosciences Aims and scope Submit manuscript

Abstract

Hopeful monsters are organisms with a profound mutant phenotype that have the potential to establish a new evolutionary lineage. The Synthetic Theory of evolutionary biology has rejected the evolutionary relevance of hopeful monsters, but could not fully explain the mechanism and mode of macroevolution. On the other hand, several lines of evidence suggest that hopeful monsters played an important role during the origin of key innovations and novel body plans by saltational rather than gradual evolution. Homeotic mutants are identified as an especially promising class of hopeful monsters. Examples for animal and plant lineages that may have originated as hopeful monsters are given. Nevertheless, a brief review of the history of the concept of hopeful monsters reveals that it needs refinements and empirical tests if it is to be a useful addition to evolutionary biology. While evolutionary biology is traditionally zoocentric, hopeful monsters might be more relevant for plant than for animal evolution. Even though during recent years developmental genetics has provided detailed knowledge about how hopeful monsters can originate in the first place, we know almost nothing about their performance in natural populations and thus the ultimate difference between hopeful and hopeless. Studying the fitness of candidate hopeful monsters (suitable mutants with profound phenotype) in natural habitats thus remains a considerable challenge for the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akam, M., 1998. Hox genes, homeosis and the evolution of segment identity: no need for hopeless monsters. Int. J. Dev. Biol. 42, 445–451.

    PubMed  CAS  Google Scholar 

  • Albert, V.A., Oppenheimer, D.G., Lindqvist, C., 2002. Pleiotropy, redundancy and the evolution of flowers. Trends Plant Sci. 7, 297–301.

    Article  PubMed  CAS  Google Scholar 

  • Arthur, W., 2002. The emerging conceptual framework of evolutionary developmental biology. Nature 415, 757–764.

    PubMed  CAS  Google Scholar 

  • Bateman, R.M., DiMichele, W.A., 1994. Saltational evolution of form in vascular plants: a neoGoldschmidtian synthesis. In: Ingram, D.S., Hudson, A. (Eds.), Shape and Form in Plants and Fungi. Academic Press, London, pp. 63–102.

    Google Scholar 

  • Bateman, R.M., DiMichele, W.A., 2002. Generating and filtering major phenotypic novelties: neoGoldschmidtian saltation revisited. In: Cronk, Q.C.B., Bateman, R.M., Hawkins, J.A. (Eds.), Developmental Genetics and Plant Evolution. Taylor & Francis, London, pp. 109–159.

    Google Scholar 

  • Baum, D.A., Donoghue, M.J., 2002. Transference of function, heterotopy and the evolution of plant development. In: Cronk, Q.C.B., Bateman, R.M., Hawkins, J.A. (Eds.), Developmental Genetics and Plant Evolution. Taylor & Francis, London, pp. 52–69.

    Google Scholar 

  • Becker, A., Theißen, G., 2003. The major clades of MADS-box genes and their role in the development and evolution of flowering plants. Mol. Phyl. Evol. 29, 464–489.

    Article  CAS  Google Scholar 

  • Bradley, D., Carpenter, R., Sommer, H., Hartley, N., Coen, E., 1993. Complementary floral homeotic phenotypes result from opposite orientations of a transposon at the Plena-locus of Antirrhinum. Cell 72, 85–95.

    Article  PubMed  CAS  Google Scholar 

  • Carroll, S.B., 1995. Homeotic genes and the evolution of arthropods and chordates. Nature 376, 479–485.

    Article  PubMed  CAS  Google Scholar 

  • Carroll, S.B., 2001. Chance and necessity: the evolution of morphological complexity and diversity. Nature 409, 1102–1109.

    Article  PubMed  CAS  Google Scholar 

  • Coen, E., 2001. Goethe and the ABC model of flower development. C. R. Acad. Sci. Paris, Sciences de la vie 324, 1–8.

    Google Scholar 

  • Crepet, W.L., 2000. Progress in understanding angiosperm history, success, and relationships: Darwin's abominable “perplexing phenomenon”. Proc. Natl. Acad. Sci. USA 97, 12939–12941.

    Article  PubMed  CAS  Google Scholar 

  • Cubas, P., Vincent, C., Coen, E., 1999. An epigenetic mutation responsible for natural variation in floral symmetry. Nature 401, 157–161.

    Article  PubMed  CAS  Google Scholar 

  • Dahlgren, K.V.O. 1919. Erblichkeitsversuche mit einer dekandrischen Capsella bursa-pastoris (L.). Svensk Bot. Tidskr. 13, 48–60.

    Google Scholar 

  • Darwin, C., 1859. On the Origin of Species by Means of Natural Selection. Murray, London.

    Google Scholar 

  • Dennett, D., 2002. In: Pagel, M. (Ed.), Encyclopedia of Evolution. Oxford University Press, New York, pp. E83-E92.

    Google Scholar 

  • Dietrich, M.R., 2000. From hopeful monsters to homeotic effects: Richard Goldschmidt's integration of development, evolution and genetics. Am. Zool. 40, 738–747.

    Article  Google Scholar 

  • Dietrich, M.R., 2003. Richard Goldschmidt: hopeful monsters and other ‘heresies’. Nat. Rev. Genet. 4, 68–74.

    Article  PubMed  CAS  Google Scholar 

  • Doebley, J., Stec, A., Hubbard, L., 1997. The evolution of apical dominance in maize. Nature 386, 485–488.

    Article  PubMed  CAS  Google Scholar 

  • Dobzhansky, T., 1937. Genetics and the Origin of Species. Columbia University Press, New York.

    Google Scholar 

  • Ford, V.S., Gottlieb, L.D., 1992. Bicalyx is a natural homeotic floral variant. Nature 358, 671–673.

    Article  Google Scholar 

  • Fortey, R.A., Briggs, D.E.G., Wills, M.A., 1997. The Cambrian evolutionary ‘explosion’ recalibrated. Bioessays 19, 429–434.

    Article  Google Scholar 

  • Frazzetta, T.H., 1970. From hopeful monsters of bolyerine snakes? Am. Nat. 104, 55–72.

    Article  Google Scholar 

  • Frohlich, M.W., 2003. An evolutionary scenario for the origin of flowers. Nat. Rev. Genet. 4, 559–566.

    Article  PubMed  CAS  Google Scholar 

  • Frohlich, M.W., Parker, D.S., 2000. The mostly male theory of flower evolutionary origins: from genes to fossils. Syst. Bot. 25, 155–170.

    Article  Google Scholar 

  • Gailing, O., Bachmann, K., 2000. The evolutionary reduction of microsporangia in Microseris (Asteraceae): transition genotypes and phenotypes. Plant Biol. 2, 455–461.

    Article  Google Scholar 

  • Gehring, W.J., 1992. The homeobox in perspective. Trends Biochem. Sci. 17, 277–280.

    Article  PubMed  CAS  Google Scholar 

  • Gilbert, S.F., Opitz, J.M., Raff, R.A., 1996. Resynthesizing evolutionary and developmental biology. Dev. Biol. 173, 357–372.

    Article  PubMed  CAS  Google Scholar 

  • Goldschmidt, R., 1940. The Material Basis of Evolution. Yale University Press, New Haven.

    Google Scholar 

  • Gottschalk, W., 1971. Die Bedeutung der Genmutation für die Evolution der Pflanze. Gustav Fischer Verlag, Stuttgart.

    Google Scholar 

  • Gould, S.J., 1977a. The return of hopeful monsters. Natural Hist. 86 (6), 24–30.

    Google Scholar 

  • Gould, S.J., 1977b. Ontogeny and Phylogeny. Harvard University Press, Cambridge, MA, USA.

    Google Scholar 

  • Gould, S.J., Eldredge, N., 1993. Punctuated equilibrium comes of age. Nature 366, 223–227.

    Article  PubMed  CAS  Google Scholar 

  • Haag, E.S., True, J.R., 2001. From mutants to mechanisms? Assessing the candidate gene paradigm in evolutionary biology. Evolution 55, 1077–1084.

    PubMed  CAS  Google Scholar 

  • Iltis, H.H., 1983. From teosinte to maize: the catastrophic sexual transmutation. Science 222, 886–894.

    Article  PubMed  Google Scholar 

  • Iltis, H.H., 2000. Homeotic sexual translocation and the origin of maize (Zea mays, Poaceae): a new look at an old problem. Econ. Bot. 54, 7–42.

    Google Scholar 

  • Junker, T., 2004. Die zweite Darwinsche Revolution. Geschichte des Synthetischen Darwinismus in Deutschland 1924 bis 1950 (Acta Biohistorica, Bd. 8). Basilisken-Presse, Marburg.

    Google Scholar 

  • Junker, T., Hoßfeld, U., 2001. Die Entdeckung der Evolution. Eine revolutionäre Theorie und ihre Geschichte. Wissenschaftliche Buchgesellschaft Darmstadt.

  • Kanno, A., Saeki, H., Kameya, T., Saedler, H., Theissen, G., 2003. Heterotopic expression of class B floral homeotic genes supports a modified ABC model for tulip (Tulipa gesneriana). Plant Mol. Biol. 52, 831–841.

    Article  PubMed  CAS  Google Scholar 

  • Kellogg, E.A., 2000. The grasses: a case study in macroevolution. Annu. Rev. Ecol. Syst. 31, 217–238.

    Article  Google Scholar 

  • Kramer, E.M., Di Stilio, V.S., Schluter, P.M., 2003. Complex patterns of gene duplication in the APETALA3 and PISTILLATA lineages of the Ranunculaceae. Int. J. Plant Sci. 164, 1–11.

    Article  CAS  Google Scholar 

  • Krizek, B.A., Meyerowitz, E.M., 1996. The Arabidopsis homeotic genes APETALA3 and PISTILLATA are sufficient to provide the B class organ identity function. Development 122, 11–22.

    PubMed  CAS  Google Scholar 

  • Lenski, R.E., Ofria, C., Pennock, R.T., Adami, C., 2003. The evolutionary origin of complex features. Nature 423, 139–144.

    Article  PubMed  CAS  Google Scholar 

  • Levinton, J., Dubb, L., Wray, G.A., 2004. Simulations of evolutionary radiations and their application to understanding the probability of a Cambrian explosion. J. Paleont. 78, 31–38.

    Article  Google Scholar 

  • Lewis, E.B., 1994. Homeosis: the first 100 years. Trends Genet. 10, 341–343.

    Article  PubMed  CAS  Google Scholar 

  • Lönnig, W.-E., 2004. Dynamic genomes, morphological stasis, and the origin of irreducible complexity. In: Parisi, V., De Fonzo, V., Aluffi-Pentini, F. (Eds.), Dynamical Genetics. Research Signpost, Trivandrum, India, pp. 101–119.

    Google Scholar 

  • Mayr, E., 1942. Systematics and the Origin of Species. Columbia University Press, New York.

    Google Scholar 

  • Mayr, E., Provine, W.B., 1980. The Evolutionary Synthesis, Harvard University Press, Cambridge, MA.

    Google Scholar 

  • Meyerowitz, E.M., 2002. Plants compared to animals: the broadest comparative study of development. Science 295, 1482–1485.

    Article  PubMed  CAS  Google Scholar 

  • Meyerowitz, E.M., Smyth, D.R., Bowman, J.L., 1989. Abnormal flowers and pattern formation in floral development. Development 106, 209–217.

    Google Scholar 

  • Moritz, D.M.L., Kadereit, J.W., 2001. The genetics of evolutionary change in Senecio vulgaris L.: a QTL mapping approach. Plant Biol. 3, 544–552.

    Article  CAS  Google Scholar 

  • Murbeck, S.V., 1918. Über staminale Pseudapetalie und deren Bedeutung für die Frage nach der Herkunft der Blütenkrone. Lunds Universitets Årsskrift N.F. Avd. 2, Bd. 14, No. 25, Lund.

  • Ohya, Y.K., Kuraku, S., Kuratani, S., 2005. Hox code in embryos of Chinese soft-shelled turtle Pelodiscus sinensis correlates with the evolutionary innovation in the turtle. J. Exp. Zool. (Mol. Dev. Evol.) 304B, 107–118.

    Article  CAS  Google Scholar 

  • Opiz, P.M., 1821. 2. Capsella apetala Opiz. Eine neue merkwürdige Pflanze. Flora Nr. 28, oder: Botanische Zeitung, Regensburg, 28. Juli 1821.

  • Philippe, H., Chenuil, A., Adoutte, A., 1994. Can the Cambrian explosion be inferred through molecular phylogeny? Development (Suppl.), 15–25.

    Google Scholar 

  • Raff, R.A., 2005. Editorial: stand up for evolution. Evol. Dev. 7, 273–275.

    Article  PubMed  Google Scholar 

  • Reichert, H., 1998. Eine kronblattlose Sippe des Hirtentäschels (Capsella bursa-pastoris) seit Jahren bestandsbildend bei Gau-Odernheim/Rheinhessen. Hessische Floristische Rundbriefe 47 (4), 53–55.

    Google Scholar 

  • Reif, W.-E., Junker, T., Hoßfeld, U., 2000. The synthetic theory of evolution: general problems and the German contribution to the synthesis. Theory Biosci. 119, 41–91.

    Google Scholar 

  • Riedl, R., 1977. A systems-analytical approach to macro-evolutionary phenomena. Quart. Rev. Biol. 52, 351–370.

    Article  PubMed  CAS  Google Scholar 

  • Rieppel, O., 2001. Turtles as hopeful monsters. Bioessays 23, 987–991.

    Article  PubMed  CAS  Google Scholar 

  • Ronse De Craene, L.P., 2003. The evolutionary significance of homeosis in flowers: a morphological perspective. Int. J. Plant Sci. 164, S225-S235.

    Article  Google Scholar 

  • Rudall, P.J., Bateman, R.M., 2002. Roles of synorganisation, zygomorphy and heterotopy in floral evolution: the gynostemium and labellum of orchids and other lilioid monocots. Biol. Rev. 77, 403–441.

    Article  PubMed  Google Scholar 

  • Rudall, P.J., Bateman, R., 2003. Evolutionary change in flowers and inflorescences: evidence from naturally occurring terata. Trends Plant Sci. 8, 76–82.

    Article  PubMed  CAS  Google Scholar 

  • Rutishauser, R., Isler, B., 2001. Developmental genetics and morphological evolution of flowering plants, especially bladderworths (Utricularia): fuzzy Arberian morphology complements classical morphology. Ann. Bot. 88, 1173–1202.

    Article  Google Scholar 

  • Rutishauser, R., Moline, P., 2005. Evo-devo and the search for “sameness” in biological systems. In: Richter, S., Olsson, L. (Eds.), Evolutionary Developmental Biology: New Challenges to the Homology Concept? Theory Biosci. 124, pp. 213–242.

    Article  PubMed  Google Scholar 

  • Sattler, R., 1988. Homeosis in plants. Am. J. Bot. 75, 1606–1617.

    Article  Google Scholar 

  • Simpson, G.G., 1944. Tempo and Mode in Evolution. Columbia University Press, New York.

    Google Scholar 

  • Stuessy, T.F., 2004. A transitional-combinational theory for the origin of angiosperms. Taxon 53, 3–16.

    Article  Google Scholar 

  • Svensson, M.E., 2004. Homology and homocracy revisited: gene expression patterns and hypotheses of homology. Dev. Genes Evol. 214, 418–421.

    Article  PubMed  CAS  Google Scholar 

  • Theißen, G., 2000. Evolutionary developmental genetics of floral symmetry: the revealing power of Linnaeus' monstrous flower. Bioessays 22, 209–213.

    Article  PubMed  Google Scholar 

  • Theißen, G., 2001. Development of floral organ identity: stories from the MADS house. Curr. Opin. Plant Biol. 4, 75–85.

    Article  PubMed  Google Scholar 

  • Theißen, G., 2002. Orthology: secret life of genes. Nature 415, 741.

    PubMed  Google Scholar 

  • Theißen, G., 2005. Birth, life and death of developmental control genes: new challenges for the homology concept. In: Richter, S., Olsson, L., (Eds.), Evolutionary Developmental Biology: New Challenges to the Homology Concept? Theory Biosci. 124, pp. 199–212.

    PubMed  Google Scholar 

  • Theißen, G., Becker, A., 2004. Gymnosperm orthologues of class B floral homeotic genes and their impact on understanding flower origin. Crit. Rev. Plant Sci. 23, 129–148.

    Article  CAS  Google Scholar 

  • Theißen, G., Becker, A., Di Rosa, A., Kanno, A., Kim, J.T., Münster, T., Winter, K.-U., Saedler, H., 2000. A short history of MADS-box genes in plants. Plant Mol. Biol. 42, 115–149.

    Article  PubMed  Google Scholar 

  • Theißen, G., Becker, A., Kirchner, C., Münster, T., Winter, K.-U., Saedler, H., 2002. How land plants learned their floral ABCs: the role of MADS-box genes in the evolutionary origin of flowers. In: Cronk, Q.C.B., Bateman, R.M., Hawkins, J.A. (Eds.), Developmental Genetics and Plant Evolution. Taylor & Francis, London, pp. 173–205.

    Google Scholar 

  • Trattinnick, L., 1821. Botanische Bemerkungen. Flora 1821, 723.

    Google Scholar 

  • Valentine, J.W., Jablonski, D., Erwin, D.H., 1999. Fossils, molecules, and the embryo: new perspectives on the Cambrian explosion. Development 126, 851–859.

    PubMed  CAS  Google Scholar 

  • Vargas, A.O., Fallon, J.F., 2005. Birds have dinosaur wings: the molecular evidence. J. Exp. Zool. (Mol. Dev. Evol.) 304B, 86–90.

    Article  CAS  Google Scholar 

  • Vergara-Silva, F., 2003. Plants and the conceptual articulation of evolutionary developmental biology. Biol. Philos. 18, 249–284.

    Article  Google Scholar 

  • Wagner, G.P., 2000. What is the promise of developmental evolution: Part I: why is developmental biology necessary to explain evolutionary innovations? J. Exp. Zool. (Mol. Dev. Evol.) 288, 95–98.

    Article  CAS  Google Scholar 

  • Wagner, G.P., Gauthier, J.A., 1999. 1,2,3=2,3,4: a solution to the problem of the homology of the digits in the avian hand. Proc. Natl. Acad. Sci. USA 96, 5111–5116.

    Article  PubMed  CAS  Google Scholar 

  • Wagner, G.P., Laubichler, M.D., 2004. Rupert Riedl and the re-synthesis of evolutionary and developmental biology: body plan and evolvability. J. Exp. Zool. (Mol. Dev. Evol.) 302B, 92–102.

    Article  Google Scholar 

  • Wagner, G.P., Müller, G.B., 2002. Evolutionary innovations overcome ancestral constraints: a re-examination of character evolution in male sepsid flies (Diptera: Sepsidae). Evol. Dev. 4, 1–6.

    Article  PubMed  Google Scholar 

  • Wang, H., Nussbaum-Wagler, T., Li, B., Zhao, Q., Vigouroux, Y., Faller, M., Bomblies, K., Lukens, L., Doebley, J.F., 2005. The origin of the naked grains of maize. Nature 436, 714–719.

    Article  PubMed  CAS  Google Scholar 

  • Wang, R.-L., Stec, A., Hey, J., Lukens, L., Doebley, J., 1999. The limits of selection during maize domestication. Nature 398, 236–239.

    Article  PubMed  CAS  Google Scholar 

  • Weiss, K.M., 2005. The phenogenetic logic of life. Nat. Rev. Genet. 6, 36–46.

    Article  PubMed  CAS  Google Scholar 

  • Wray, G.A., Levinton, J.S., Shapiro, L.H., 1996. Molecular evidence for deep Precambrian divergences among metazoan phyla. Science 274, 568–573.

    Article  CAS  Google Scholar 

  • Wright, S., 1941. The material basis of evolution by R. Goldschmidt (review). Sci. Monthly 53, 165–170.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Günter Theißen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Theißen, G. The proper place of hopeful monsters in evolutionary biology. Theory Biosci. 124, 349–369 (2006). https://doi.org/10.1016/j.thbio.2005.11.002

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.thbio.2005.11.002

Keywords

Navigation