Economic analysis of a high-pressure urban pipeline concept (HyLine) for delivering hydrogen to retail fueling stations

https://doi.org/10.1016/j.trd.2019.10.005Get rights and content
Under a Creative Commons license
open access

Highlights

  • High-pressure pipeline system could improve hydrogen economics and logistics.

  • System allows stations to dispense fuel without onsite compression and storage.

  • Scalability reduces upfront investments, increases reliability and manageability.

  • System could facilitate growth of renewable electricity generation.

  • Analysis shows system’s hydrogen could be competitive with conventional fuels.

Abstract

Reducing the cost of delivering hydrogen to fueling stations and dispensing it into fuel cell electric vehicles (FCEVs) is one critical element of efforts to increase the cost-competitiveness of FCEVs. Today, hydrogen is primarily delivered to stations by trucks. Pipeline delivery is much rarer: one urban U.S. station has been supplied with 800-psi hydrogen from an industrial hydrogen pipeline since 2011, and a German station on the edge of an industrial park has been supplied with 13,000-psi hydrogen from a pipeline since 2006. This article compares the economics of existing U.S. hydrogen delivery methods with the economics of a high-pressure, scalable, intra-city pipeline system referred to here as the “HyLine” system. In the HyLine system, hydrogen would be produced at urban industrial or commercial sites, compressed to 15,000 psi, stored at centralized facilities, delivered via high-pressure pipeline to retail stations, and dispensed directly into FCEVs. Our analysis of retail fueling station economics in Los Angeles suggests that, as FCEV demand for hydrogen in an area becomes sufficiently dense, pipeline hydrogen delivery gains an economic advantage over truck delivery. The HyLine approach would also enable cheaper dispensed hydrogen compared with lower-pressure pipeline delivery owing to economies of scale associated with integrated compression and storage. In the largest-scale fueling scenario analyzed (a network of 24 stations with capacities of 1500 kg/d each, and hydrogen produced via steam methane reforming), HyLine could potentially achieve a profited hydrogen cost of $5.3/kg, which is approximately equivalent to a gasoline cost of $2.7/gal (assuming FCEVs offer twice the fuel economy of internal combustion engine vehicles and vehicle cost is competitive). It is important to note that significant effort would be required to develop technical knowledge, codes, and standards that would enable a HyLine system to be viable. However, our preliminary analysis suggests that the HyLine approach merits further consideration based on its potential economic advantages. These advantages could also include the value of minimizing retail space used by hydrogen compression and storage sited at fueling stations, which is not reflected in our analysis.

Cited by (0)