Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-19T11:37:39.664Z Has data issue: false hasContentIssue false

Late Quaternary glaciation history of isla de los Estados, southeasternmost South America

Published online by Cambridge University Press:  20 January 2017

Per Möller*
Affiliation:
Department of Earth and Ecosystem Sciences, Division of Geology/Quaternary Sciences, Lund University, Sölvegatan 12, SE-22362 Lund, Sweden
Christian Hjort
Affiliation:
Department of Earth and Ecosystem Sciences, Division of Geology/Quaternary Sciences, Lund University, Sölvegatan 12, SE-22362 Lund, Sweden
Svante Björck
Affiliation:
Department of Earth and Ecosystem Sciences, Division of Geology/Quaternary Sciences, Lund University, Sölvegatan 12, SE-22362 Lund, Sweden
Jorge Rabassa
Affiliation:
Laboratorio de Geología del Cuaternario, CADIC-CONICET, Bernardo Houssay 200, 9410 Ushuaia, Argentina Universidad Nacional de la Patagonia-San Juan Bosco at Ushuaia, Argentina
Juan Federico Ponce
Affiliation:
Laboratorio de Geología del Cuaternario, CADIC-CONICET, Bernardo Houssay 200, 9410 Ushuaia, Argentina
*
*Corresponding author. Fax: +46 46 2224419.E-mail address:per.moller@geol.lu.se (P. Móller).

Abstract

Isla de los Estados is a mountainous island southeast of Tierra del Fuego, in southernmost South America. Its central and eastern parts have an alpine topography, transected by U-shaped valleys, small, partly over-deepened fjords, and a multitude of abandoned cirques, all associated with extensive former local glaciations. Traces of glacial erosion generally reach 400–450 m a.s.l., and above that trimline a distinct sharp-edged nunatak derived landscape is present. The westernmost part of the island has a lower, more subdued topography, reflecting its "softer" geology but possibly also over-running and erosion by mainland-derived ice streams. The present study concentrated on glacigenic sediment sequences exposed along coastal erosional cliffs. A combination of OSL and 14C datings show that these sediments mostly date from the latest (Wisconsinan/Weichselian) glacial cycle, i.e. from the last ca. 100 ka with the oldest (glaciolacustrine) deposits possibly as old as 90–80 ka. The upper parts of overlying tills, with associated lateral and terminal moraines from glaciers that expanded onto an eustatically exposed dry shelf north of the island, date from the last global glacial maximum (LGM). Radiocarbon ages of peat and lake sediments indicate that deglaciation began 17–16 cal ka BP.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ashley, G.M., (1988). Classification of glaciolacustrine sediments. Goldthwait, R.P., Matsch, C.L., Genetic Classification of Glacigenic Sediments Balkema, Rotterdam., 243260.Google Scholar
Auer, V., (1956). The Pleistocene of Fuego-Patagonia. Part I: The Ice and Interglacial Ages. Annales Academia Scientiarum Fennicae, Series A III 45, 122.Google Scholar
Benn, D.I., (1995). Fabric signature of subglacial till deformation, Breidamerkurjökull, Iceland. Sedimentology 42, 735747.Google Scholar
Benn, D.I., Evans, D.J.A., (1996). The interpretation and classification of subglacially-deformed materials. Quaternary Science Reviews 15, 2352.Google Scholar
Benn, D.I., Evans, D.J.A., (1998). Glaciers and Glaciation. Arnold, London.Google Scholar
Bennett, K.D., Haberle, S.G., Lumley, S.H., (2000). The Last Glacial–Holocene transition in southern Chile. Science 290, 325328.Google Scholar
Björck, S., Hjort, C., Ljung, K., Möller, P., Wohlfarth, B., (2007). Isla de los Estados – Quaternary geology and palaeoclimatology at the end of the world. Rickberg, S., Swedish Polar Research Secretariat, Year book 2006 Swedish Polar Research Secretariat, Stockholm., 4449.Google Scholar
Boulton, G.S., (1996). Theory of glacial erosion, transport and deposition as a consequence of subglacial sediment deformation. Journal of Glaciology 42, 4362.CrossRefGoogle Scholar
Bronk Ramsey, C., (1995). Radiocarbon calibration and analysis of stratigraphy: the OxCal Program. Radiocarbon 37, 425430.Google Scholar
Bronk Ramsey, C., (2001). Development of the Radiocarbon Program OxCal. Radiocarbon 43, 355363.CrossRefGoogle Scholar
Caldenius, C., (1932). Las glaciaciones cuaternarias de la Patagonia y Tierra del Fuego. Geografiska Annaler 14, 1164.Google Scholar
Caminos, R., Nullo, F., (1979). Descriptión Geológica de la Hoja 67 e, Isla de los Estados. Servicio Geológico Nacional, Buenos Aires.Google Scholar
Clark, P.U., (1991). Striated clast pavements, products of deforming subglacial sediments?. Geology 19, 530533.Google Scholar
Clark, P.U., Dyke, A.S., Shakun, J.D., Carlson, A.E., Clark, J., Wohlfarth, B., Mitrovica, J.X., Hostetler, S.W., McCabe, A.M., (2009). The Last Glacial Maximum. Science 325, 710714.Google Scholar
Cutler, K.B., Edwards, R.L., Taylor, F.W., Cheng, H., Adkins, J., Gallup, C.D., Cutler, P.M., Burr, G.S., Bloom, A.L., (2003). Rapid sea-level fall and deep-ocean temperature change since the last glacial period. Earth and Planetary Science Letters 206, 253271.Google Scholar
Dalziel, I.W.D., Eliott, D., (1973). Evolution of the Scotia. Nature 233, 246252.Google Scholar
Dalziel, I.W.D., Caminos, R., Palmer, K.F., Nullo, F., Casanova, R., (1974). South extremity of Andes: geology of Isla de los Estados, Argentine Tierra del Fuego. American Association of Petroleum Geologists Bulletin 58, 12, 25022512.Google Scholar
Denton, G.H., Heusser, C.J., Lowell, T.V., Moreno, P.I., Andersen, B.G., Heusser, L.E., Schlüchter, C., Marchant, D.R., (1999). Inter-hemisphere linkage of palaeoclimate during the last glaciation. Geografiska Annaler 81A, 107153.Google Scholar
Elson, J.A., (1988). Comments on glacitectonite, deformation till and comminution till. Goldthwait, R.P., Matsch, C.L., Genetic Classification of Glacigenic Sediments, 85–88 Balkema, Rotterdam.Google Scholar
Evans, D.J.A., Phillips, E.R., Hiemstra, J.F., Auton, C.A., (2006). Subglacial till: formation, sedimentary characteristics and classification. Earth-Science Reviews 78, 115176.CrossRefGoogle Scholar
Eyles, N., Eyles, C.H., Miall, A.D., (1983). Lithofacies types and vertical profile models; an alternative approach to the description and environmental interpretation of glacial diamicton and diamictite sequences. Sedimentology 30, 393410.Google Scholar
Fuchs, M., Owen, L.A., (2008). Luminiscence dating of glacial and associated sediments: review, recommendations and future directions. Boreas 37, 636659.Google Scholar
Garreaud, R.D., Vuille, M., Compagnucci, R., Marengo, J., (2009). Present-day South American climate. Palaeogeography, Palaeclimatology, Palaeoecology 281, 180195.Google Scholar
Heusser, C.J., (2003). Ice Age Southern Andes – A Chronicle Of Palaeoecological Events. Developments in Quaternary Science vol. 3, Elsevier, Amsterdam.Google Scholar
Hulton, N.R.J., Purves, R.S., McCulloch, R.D., Sugden, D.E., Bentley, M.J., (2002). The Last Glacial Maximum and deglaciation in southern South America. Quaternary Science Reviews 21, 233241.Google Scholar
Johns, H., (1981). The vegetation history and paleoclimatology for the Late Quaternary of Isla de los Estados, Argentina. Michigan State University, Dept. of Geology, MSc thesis.Google Scholar
Kaplan, M.R., Fogwall, C.J., Sugden, D.E., Hulton, N.J.R., Kubik, P.W., Freeman, S.P.H.T., (2008). Southern Patagonian glacial chronology for the Last Glacial period and implications for Southern Ocean climate. Quaternary Science Reviews 27, 284294.Google Scholar
Lambeck, K., Chappell, J., (2001). Sea level change trough the last glacial cycle. Science 292, 679686.Google Scholar
Ljung, K., Ponce, J.F., (2006). Periglacial features on Isla de los Estados, Tierra del Fuego, Argentina. III Congreso Argentino de Cuaternario y Geomorfología vol. 1, Córdoba, Argentina., 8590.Google Scholar
Malagnino, E.C., Olivero, E.B., (1999). New evidence of the total glaciation of the Isla Grande de Tierra Del Fuego. Journal of South American Earth Sciences 12, 343348.Google Scholar
Mark, D.M., (1973). Analysis of axial orientation data, including till fabrics. Geological Society of America Bulletin 84, 13691374.Google Scholar
McCormac, G., Hogg, A.G., Blackwell, P.G., Buck, C.E., Higham, T.F.G., Reimer, P.J., (2004). SHCal04 Southern Hemisphere calibration, 0–11.0 cal kyr BP. Radiocarbon 46, 10871092.Google Scholar
Murray, A.S., Wintle, A.G., (2000). Luminiscence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiation Measurements 32, 5773.Google Scholar
Murray, A.S., Marten, R., Johnston, P., Martin, A.J., (1987). Analysis for naturally occurring radionuclides at environmental concentrations by gamma spectrometry. Journal of Radioanalytical and Nuclear Chemistry 115, 263288.Google Scholar
Nordenskjöld, O., (1898). Geologie, Geographie und Anthropologie. Wissenschaftliche Ergebnisse der schwedischen Expedition nach den Magellansländern 1895–1897, unter Leitung von Otto Nordenskjöld Norstedt and Söner, Stockholm.Google Scholar
Olley, J.M., Murray, A.S., Roberst, R.G., (1996). The effects of disequilibria in uranium and thorium decay chains on burial dose rates in fluvial sediments. Quaternary Geochronology 15, 751760.Google Scholar
Pendall, E., Markgraf, V., White, J.W.C., Dreier, M., (2001). Multiproxy record of Late Pleistocene–Holocene climate and vegetation changes from a peat bog in Patagonia. Quaternary Research 55, 168178.CrossRefGoogle Scholar
Piotrowski, J.A., Kraus, A.M., (1997). Response of sediment to ice sheet loading in northwestern Germany: effective stresses and glacier-bed stability. Journal of Glaciology 43, 495502.Google Scholar
Piotrowski, J.A., Larsen, N.J., Junge, F.W., (2004). Reflections on soft subglacial beds as a mosaic of deforming and stable spots. Quaternary Science Reviews 23, 9931000.Google Scholar
Ponce, F., (2008). Palinología y Geomorfología del Cenozoico tardío de Isla de los Estados. Unpublished PhD. Thesis, Departamento de Geología, Universidad Nacional del Sur, Argentina.Google Scholar
Ponce, J.F., Rabassa, J., Martínez, O.A., (2009). Morfometría y génesis de los fordos de Isla de los Estados, Tierra del Fuego. Revistita de la Asociación Geológia Argentina 65, 638647.Google Scholar
Rabassa, J., (2008). Late Cenozoic glaciations in Patagonia and Tierra del Fuego. Rabassa, J., The Late Cenozoic af Patagonia and Tierra del Fuego . Developments in Quaternary Science. vol. 11, Elsevier, 151204.Google Scholar
Rabassa, J., Coronato, A., Bujalesky, G., Salemme, M., Roig, C., Meglioli, A., Heusser, C., Gordillo, S., Roig, F., Borromei, A., Quattrocchio, M., (2000). Quaternary of Tierra del Fuego, southernmost South America: an updated review. Quaternary International 68–71, 217240.CrossRefGoogle Scholar
Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Bertrand, C.J.H., Blackwell, P.G., Buck, C.E., Burr, G.S., Cutler, K.B., Damon, P.E., Edwards, R.L., Fairbanks, R.G., Friedrich, M., Guildersson, T.P., Hogg, A.G., Hughen, K.A., Kromer, B., McCormac, G., Manning, S.W., Ramsey, C.B., Raimer, R.W., Remmele, S., Southon, J.R., Stuiver, M., Talamo, S., Taylor, C.B., Plicht, J.V.D., Weyhenmayer, C.E., (2004). IntCal04 terrestrial radiocarbon age calibration, 0–26 cal ky BP. Radiocarbon 46, 10291058.Google Scholar
Smith, N.D., Ashley, G., (1985). Proglacial lacustrine environment. In: Ashley, M, Shaw, , and Smith, D., (Eds.), Glacial sedimentary environments . SEPM Short Course. 16, 135216.Google Scholar
Stott, L., Timmermann, A., Thunell, R., (2007). Southern Hemisphere and deep-sea warming led deglacial CO2 rise and tropical warming. Science 318, 435438.Google Scholar
Sugden, D.E., Bentley, M.J., Fogwill, C.J., Hulton, N.R.J., McCulloch, R.D., Purves, R.S., (2005). Late-glacial glacier events in southernmost South America: a blend of "northern" and "southern" hemispheric climatic signals?. Geografiska Annaler 87A, 273288.Google Scholar
Unkel, I., Björck, S., Wohlfarth, B., (2008). Deglacial environmental changes on Isla de los Estados (54.5°S), southeastern Tierra del Fuego. Quaternary Science Reviews 27, 15411554.Google Scholar