Skip to main content Accessibility help
×
  • Cited by 312
  • Fiona Simpson, Georg-August-Universität, Göttingen, Germany, Karsten Bahr, Georg-August-Universität, Göttingen, Germany
Publisher:
Cambridge University Press
Online publication date:
December 2009
Print publication year:
2005
Online ISBN:
9780511614095

Book description

The magnetotelluric (MT) method, a technique for probing the electrical conductivity structure of the Earth, is increasingly used both in applied geophysics and in basic research. This book, first published in 2005, goes into detail on practical aspects of applying the MT technique. Beginning with the basic principles of electromagnetic induction in the Earth, this introduction to magnetotellurics aims to guide students and researchers in geophysics and other areas of Earth science through the practical aspects of the MT method: from planning a field campaign, through data processing and modelling, to tectonic and geodynamic interpretation. The book will be of use to graduate-level students and researchers who are embarking on a research project involving MT; to lecturers preparing courses on MT; and to geoscientists involved in multi-disciplinary research projects who wish to incorporate MT results in their interpretations.

Reviews

'… if my students ask me what MT really is about, I will ask them to read the book 'Practical Magnetotellurics'. It is really practical.'

Bai Danghai Source: Chinese Academy of Sciences

'Practical Magnetotellurics lives up to its title and nicely fills a big hole in the literature on the subject of the magnetotelluric (MT) method.'

Source: EOS, Transactions, American Geophysical Union

'… an excellent single resource for graduate students … to learn the fundamentals in a well-written and well-organized approach …'

Source: Surveys in Geophysics

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References
References
Achache, J., Courtillot, V., Ducruix, J. and LeMouel, J. L. (1980). The late 1960s secular variation impulse: further constraints on deep mantle conductivity. Phys. Earth Planet. Inter. 23: 72–75.
Agarwal, A. K. and Weaver, J. T. (1990). A three-dimensional numerical study of induction in southern India by an electrojet source. Phys. Earth Planet. Inter. 60: 1–17.
Akima, H. (1978). A method of bivariate interpolation and smooth surface fitting for irregularly distributed data points. ACM Trans. Math. Software 4: 148–159.
Aldredge, L. R. (1977). Deep mantle conductivity. J. Geophys. Res. 82: 5427–5431.
Allmendinger, R. W., Sharp, J. W., Tish, D.et al. (1983). Cenozoic and Mesozoic structure of the eastern basin and range province, Utah, from COCORP seismic-reflection data. Geology, 11: 532–536.
Archie, G. E. (1942). The electrical resistivity log as an aid to determining some reservoir characteristics. Trans. A. I. M. E. 146: 389–409.
Bahr, K. (1988). Interpretation of the magnetotelluric impedance tensor: regional induction and local telluric distortion. J. Geophys. 62: 119–127.
Bahr, K. (1991). Geological noise in magnetotelluric data: a classification of distortion types. Phys. Earth Planet. Inter. 66: 24–38.
Bahr, K. (1997). Electrical anisotropy and conductivity distribution functions of fractal random networks and of the crust: the scale effect of connectivity. Geophys. J. Int. 130: 649–660.
Bahr, K., Bantin, M., Jantos, Chr., Schneider, E. and Storz, W. (2000). Electrical anisotropy from electromagnetic array data: implications for the conduction mechanism and for distortion at long periods. Phys. Earth Planet. Inter. 119: 237–257.
Bahr, K. and Duba, A. (2000). Is the asthenosphere electrically anisotropic?Earth Planet. Sci. Lett. 178: 87–95.
Bahr, K. and Filloux, J. H. (1989). Local Sq response functions from EMSLAB data. J. Geophys. Res. 94: 14.195–14.200.
Bahr, K., Olsen, N. and Shankland, T. J. (1993). On the combination of the magnetotelluric and the geomagnetic depth sounding method for resolving an electrical conductivity increase at 400 km depth. Geophys. Res. Lett. 20: 2937–2940.
Bahr, K. and Simpson, F. (2002). Electrical anisotropy below slow- and fast-moving plates: paleoflow in the upper mantle?Science 295: 1270–1272.
Bahr, K., Smirnov, M., Steveling, E. and BEAR working group (2002). A gelation analogy of crustal formation derived from fractal conductive structures. J. Geophys. Res. 107: (B11) 2314, doi: 10.1029/2001JB000506.
Bai, D., Meju, M. and Liao, Z. (2001). Magnetotelluric images of deep crustal structure of the Rehai geothermal field near Tengchong, Southern China. Geophys. J. Int. 147: 677–687.
Banks, R. J. (1969). Geomagnetic variations and the electrical conductivity of the upper mantle. Geophys. J. R. Astr. Soc 17: 457–487.
Bell, D. R. and Rossman, G. R. (1992). Water in the Earth's mantle: the role of nominally anhydrous minerals. Science 255: 1391–1397.
Berdichevsky, M. N. (1999). Marginal notes on magnetotellurics. Surv. Geophys., 20: 341–375.
Berdichevsky, M. N. and Dimitriev, V. I. (1976). Distortion of magnetic and electric fields by near-surface lateral inhomogeneities. Acta Geodaet., Geophys. et Montanist. Acad. Sci. Hung. 11: 447–483.
Bigalke, J. (2003). Analysis of conductivity of random media using DC, MT, and TEM. Geophysics 68: 506–515.
BIRPS and ECORS (1986). Deep seismic profiling between England, France and Ireland. J. Geol. Soc. London 143: 45–52.
Boas, M. L. (1983). Mathematical Methods in the Physical Sciences, 2nd edn. New York: Wiley & Sons.
Brasse, H., Lezaeta, P., Rath, V., Schwalenberg, K., Soyer, W. and Haak, V. (2002). The Bolivian Altiplano conductivity anomaly. J. Geophys. Res. 107: (B5), doi: 10.1029/2001JB000391.
Brasse, H. and Junge, A. (1984). The influence of geomagnetic variations on pipelines and an application of large-scale magnetotelluric depth sounding, J. Geophys. 55: 31–36.
Brasse, H. and Rath, V. (1997). Audiomagnetotelluric investigations of shallow sedimentary basins in Northern Sudan. Geophys. J. Int. 128: 301–314.
Brown, C. (1994). Tectonic interpretation of regional conductivity anomalies. Surv. Geophys. 15: 123–157.
Cagniard, L. (1953). Basic theory of the magnetotelluric method of geophysical prospecting. Geophysics 18: 605–645.
Campbell, W. H. (1987). Introduction to electrical properties of the Earth's mantle. Pure Appl. Geophys. 125: 193–204.
Campbell, W. H.(1997). Introduction to Geomagnetic Fields. Cambridge: Cambridge University Press.
Cantwell, T. (1960). Detection and analysis of low-frequency magnetotelluric signals. Ph.D. Thesis, Dept. Geol. Geophys. M.I.T., Cambridge, Mass.
Chamberlain, T. C. (1899). On Lord Kelvin's address on the age of the Earth. Annual Report of the Smithsonian Institution, pp. 223–246.
Chapman, D. S. and Furlong, K. P. (1992). Thermal state of the continental crust. In The Continental Lower Crust, eds. Fountain, D. M., Arculus, R. J. and Kay, R. W.. Amsterdam: Elsevier, pp. 81–143.
Chapman, S. (1919). The solar and lunar diurnal variations of terrestrial magnetism. Phil. Trans. Roy. Soc. London A218: 1–118.
Chapman, S. and Ferraro, V. C. A. (1931). A new theory of magnetic storms. Terr. Mag. 36: 77–97.
Chave, A. D. and Smith, J. T. (1994). On electric and magnetic galvanic distortion tensor decompositions. J. Geophys. Res. 99: 4669–4682.
Clarke, J., Gamble, T. D., Goubau, W. M., Koch, R. H. and Miracky, R. F. (1983). Remote-reference magnetotellurics: equipment and procedures. Geophys. Prosp. 31: 149–170.
Constable, S. C., Parker, R. L. and Constable, C. G. (1987). Occam's inversion: A practical algorithm for generating smooth models from EM sounding data. Geophysics 52: 289–300.
Constable, S. C., Orange, A. S., Hoversten, G. M. and Morrison, H. F. (1998). Marine magnetotellurics for petroleum exploration. Part I: a seafloor equipment system. Geophysics 63: 816–825.
Constable, S. C., Shankland, T. J. and Duba, A. (1992). The electrical conductivity of an isotropic olivine mantle. J. Geophys. Res. 97: 3397–3404.
Davies, G. F. and Richards, M. A. (1992). Mantle convection. J. Geol. 100: 151–206.
Debayle, E. and Kennett, B. L. N. (2000). The Australian continental upper mantle: structure and deformation inferred from surface waves, J. Geophys. Res. 105: 25423–25450.
DEKORP Research Group (1991). Results of the DEKORP 1 (BELCORP-DEKORP) deep seismic reflection studies in the western part of the Rhenish Massif. Geophys. J. Int. 106: 203–227.
Dobbs, E. R. (1985). Electromagnetic Waves. London: Routledge & Kegan Paul.
Dosso, H. W. and Oldenburg, D. W. (1991). The similitude equation in magnetotelluric inversion. Geophys. J. Int. 106: 507–509.
Duba, A., Heard, H. C. and Schock, R. N. (1974). Electrical conductivity of olivine at high pressure and under controlled oxygen fugacity. J. Geophys. Res. 79: 1667–1673.
Duba, A., Heikamp, S., Meurer, W., Nover, G. and Will, G. (1994). Evidence from borehole samples for the role of accessory minerals in lower-crustal conductivity. Nature 367: 59–61.
Duba, A. and Nicholls, I. A. (1973). The influence of oxidation state on the electrical conductivity of olivine. Earth Planet. Sci. Lett. 18: 279–284.
Duba, A., Peyronneau, J., Visocekas, F. and Poirier, J.-P. (1997). Electrical conductivity of magnesiowüstite/perovskite produced by laser heating of synthetic olivine in the diamond anvil cell. J. Geophys. Res. 102: 27723–27728.
Duba, A. and Shankland, T. J. (1982) Free carbon and electrical conductivity in the mantle. Geophys. Res. Lett. 11: 1271–1274.
Duba, A. and der Gönna, J. (1994) Comment on change of electrical conductivity of olivine associated with the olivine–spinel transition. Phys. Earth Planet. Inter. 82: 75–77.
Echternacht, F., Tauber, S., Eisel, M., Brasse, H., Schwarz, G. and Haak, V. (1997). Electromagnetic study of the active continental margin in northern Chile. Phys. Earth Planet. Inter. 102: 69–87.
Eckhardt, D. H. (1963). Geomagnetic induction in a concentrically stratified Earth. J. Geophys. Res. 68: 6273–6278.
Edwards, R. E. and Nabighian, M. N. (1981). Extensions of the magnetometric resistivity (MMR) method. Geophysics 46: 459–460.
Egbert, G. D. (1997). Robust multiple-station magnetotelluric data processing. Geophys. J. Int. 130: 475–496.
Egbert, G. D. and Booker, J. R. (1986). Robust estimation of geomagnetic transfer functions. Geophys. J. R. Astr. Soc. 87: 173–194.
Eisel, M. and Bahr, K. (1993). Electrical anisotropy under British Columbia: interpretation after magnetotelluric tensor decomposition. J. Geomag. Geoelectr. 45: 1115–1126.
Eisel, M. and Haak, V. (1999). Macro-anisotropy of the electrical conductivity of the crust: a magneto-telluric study from the German Continental Deep Drilling site (KTB). Geophys. J. Int. 136: 109–122.
ELEKTB group (1997). KTB and the electrical conductivity of the crust. J. Geophys. Res. 102: 18289–18305.
Engels, M., Korja, T. and BEAR Working Group (2002). Multisheet modeling of the electrical conductivity structure in the Fennoscandian Shield. Earth, Planets and Space 54: 559–573.
Evans, C. J., Chroston, P. N. and Toussaint-Jackson, J. E. (1982). A comparison study of laboratory measured electrical conductivity in rocks with theoretical conductivity based on derived pore aspect ratio spectra. Geophys. J. R. Astr. Soc. 71: 247–260.
Ferguson, I. J., Lilley, F. E. M. and Filloux, J. H. (1990). Geomagnetic induction in the Tasman Sea and electrical conductivity structure beneath the Tasman seafloor. Geophys. J. Int. 102: 299–312.
Filloux, J. H. (1973). Techniques and instrumentation for studies of natural electromagnetic induction at sea. Phys. Earth Planet. Inter. 7: 323–338.
Filloux, J. H. (1987). Instrumentation and experimental methods for oceanic studies. In Geomagnetism, Volume 1, ed. Jacobs, J. A.. London: Academic Press, pp. 143–248.
Fiordelisi, A., Manzella, A., Buonasorte, G., Larsen, J. C. and Mackie, R. L. (2000). MT methodology in the detection of deep, water-dominated geothermal systems. In Proceedings World Geothermal Congress, eds. Iglesias, E., Blackwell, D., Hunt, T., Lund, J. and Tamanyu, S.. Tokyo: International Geothermal Association, pp. 1121–1126.
Fischer, G. and Quang, B. V. (1982). Parameter trade-off in one-dimensional magnetotelluric modelling. J. Geophys. 51: 206–215.
Fischer, G., Schnegg, P.-A., Pegiron, M. and Quang, B. V. (1981). An analytic one-dimensional magnetotelluric inversion scheme. Geophys. J. R. Astr. Soc. 67: 257–278.
Freund, R. J. and Wilson, W. J. (1998). Regression Analysis: Statistical modeling of a response variable. San Diego: Academic Press.
Frost, B. R. (1979). Mineral equilibria involving mixed volatiles in a C–O–H fluid phase: the stabilities of graphite and siderite. Amer. J. Sci., 279: 1033–1059.
Frost, B. R., Fyfe, W. S., Tazaki, K. and Chan, T. (1989). Grain boundary graphite in rocks and implications for high electrical conductivity in the crust. Nature 340: 134–136.
Furlong, K. P. and Fountain, D. M. (1986). Continental crustal underplating: thermal considerations and seismic-petrologic consequences. J. Geophys. Res. 91: 8285–8294.
Furlong, K. P. and Langston, C. A. (1990). Geodynamic aspects of the Loma Prieta Earthquake, Geophys. Res. Lett. 17: 1457–1460.
Gaherty, J. B. and Jordan, T. H. (1995). Lehmann discontinuity as the base of an anisotropic layer beneath continents. Science 268: 1468–1471.
Gamble, T. D., Goubau, W. M. and Clarke, J. (1979). Magnetotellurics with a remote magnetic reference. Geophysics 44: 53–68.
Gauss, C. F. (1838). Erläuterungen zu den Terminszeichnungen und den Beobachtungszahlen. In Resultate aus den Beobachtungen des magnetischen Vereins im Jahre 1837, eds. Gauss, C. F. and Weber, W.. Göttingen: Dieterichsche Buchhandlung, pp. 130–137.
Gauss, C. F.(1839). Allgemeine Theorie des Erdmagnetismus. In Resultate aus den Beobachtungen des magnetischen Vereins im Jahre 1838, eds. Gauss, C. F. and Weber, W.. Göttingen: Dieterichsche Buchhandlung, pp. 1–57.
Glassley, W. E. (1982). Fluid evolution and graphite genesis in the deep continental crust. Nature 295: 229–231.
Goubau, W. M., Gamble, T. D. and Clarke, J. (1979). Magnetotelluric data analysis: removal of bias. Geophysics 43: 1157–1166.
Graham, G. (1724). An account of observations made of the variation of the horizontal needle at London in the latter part of the year 1722 and beginning 1723. Phil. Trans. Roy. Soc. London 383: 96–107.
Grammatica, N. and Tarits, P. (2002). Contribution at satellite altitude of electromagnetically induced anomalies arising from a three-dimensional heterogeneously conducting Earth, using Sq as an inducing source field. Geophys. J. Int. 151: 913–923.
Groom, R. W. and Bahr, K. (1992). Correction for near-surface effects: decomposition of the magnetotelluric impedance tensor and scaling corrections for regional resistivities: a tutorial. Surv. Geophys. 13: 341–379.
Groom, R. W. and Bailey, R. C. (1989). Decomposition of the magnetotelluric impedance tensor in the presence of local three-dimensional galvanic distortion. J. Geophys. Res. 94: 1913–1925.
Groot-Hedlin, C. (1991). Removal of static shift in two dimensions by regularized inversion. Geophysics 56: 2102–2106.
Groot-Hedlin, C. and Constable, S. C. (1990). Occam's inversion to generate smooth, two-dimensional models from magnetotelluric data. Geophysics 55: 1613–1624.
Guéguen, Y., David, Chr. and Gavrilenko, P. (1991). Percolation networks and fluid transport in the crust. Geophys. Res. Lett. 18: 931–934.
Guéguen, Y. and Palciauskas, V. (1994). Introduction to the Physics of Rocks. Princeton: Princeton University Press.
Haak, V. and Hutton, V. R. S. (1986). Electrical resistivity in continental lower crust. In The Nature of the Lower Continental Crust, eds. Dawson, J. B., Carswell, D. A., Hall, J., and Wedepohl, K. H.. Geological Society Special Publication 24: 35–49. Oxford: Blackwell Scientific Publications.
Haak, V., Stoll, J. and Winter, H. (1991). Why is the electrical resistivity around KTB hole so low?Phys. Earth Planet. Inter. 66: 12–23.
Hamano, Y. (2002). A new time-domain approach for the electromagnetic induction problem in a three-dimensional heterogeneous Earth. Geophys. J. Int. 150: 753–769.
Hashin, Z. and Shtrikman, S. (1962). A variational approach to the theory of the effective magnetic permeability of multiphase materials. J. Appl. Phys. 33: 3125–3131.
Hautot, S. and Tarits, P. (2002). Effective electrical conductivity of 3-D heterogeneous porous media. Geophys. Res. Lett. 29, No. 14, 10.1029/2002GL014907.
Hautot, S., Tarits, P., Whaler, K., Gall, B., Tiercelin, J-J and Turdu, C. (2000). Deep structure of the Baringo Rift Basin (central Kenya) from three-dimensional magnetotelluric imaging: implications for rift evolution. J. Geophys Res. 105: 23 493–23 518.
Heinson, G. S. (1999). Electromagnetic studies of the lithosphere and asthenosphere. Surv. Geophys. 20: 229–255.
Heinson, G. S. and Lilley, F. E. M. (1993). An application of thin sheet electromagnetic modelling to the Tasman Sea. Phys. Earth Planet. Inter. 81: 231–251.
Hermance, J. F. (1979). The electrical conductivity of materials containing partial melt: a simple model of Archie's law. Geophys. Res. Lett. 6: 613–616.
Hirsch, L. M, Shankland, T. and Duba, A. (1993). Electrical conduction and polaron mobility in Fe-bearing olivine. Geophys. J. Int. 114: 36–44.
Hobbs, B. A. (1992). Terminology and symbols for use in studies of electromagnetic induction in the Earth. Surv. Geophys., 13: 489–515.
Hohmann, G. W. (1975). Three-dimensional induced polarisation and electromagnetic modeling. Geophysics 40: 309–324.
Hoversten, G. M., Morrison, H. F. and Constable, S. C. (1998). Marine magnetotellurics for petroleum exploration, Part II: Numerical analysis of subsalt resolution. Geophysics 63: 826–840.
Huber, P. J. (1981). Robust Statistics. New York: John Wiley & Sons.
Huenges, E., Engeser, B., Erzinger, J., Kessels, W., Kück, J. and Pusch, G. (1997). The permeable crust: geohydraulic properties down to 9101 m depth. J. Geophys. Res. 102: 18255–18265.
Hyndman, R. D. and Shearer, P. M. (1989). Water in the lower crust: modelling magnetotelluric and seismic reflection results. Geophys. J. R. Astr. Soc. 98: 343–365.
Jackson, J. D. (1975). Classical Electrodynamics, 2nd edn. New York: John Wiley & Sons.
Jenkins, G. M. and Watts, D. G. (1968). Spectral Analysis and its Applications. San Francisco: Holden-Day.
Ji, S., Rondenay, S., Mareschal, M. and Senechal, G. (1996). Obliquity between seismic and electrical anisotropies as a potential indicator of movement sense for ductile shear zones in the upper mantle. Geology 24: 1033–1036.
Jödicke, H. (1992). Water and graphite in the Earth's crust – an approach to interpretation of conductivity models. Surv. Geophys. 13: 381–407.
Jones, A. G. (1977). Geomagnetic induction studies in southern Scotland. Ph.D. Thesis, University of Edinburgh.
Jones, A. G.(1982). On the electrical crust–mantle structure in Fennoscandia: no Moho, and the asthenosphere revealed?Geophys. J. R. Astr. Soc. 68: 371–388.
Jones, A. G.(1983). The problem of current channelling: a critical review. Geophysical Surveys 6: 79–122.
Jones, A. G.(1992). Electrical conductivity of the continental lower crust. In Continental Lower Crust, eds. Fountain, D. M., Arculus, R. J. and Kay, R. W.. Amsterdam: Elsevier, pp. 81–143.
Jones, A. G.(1999). Imaging the continental upper mantle using electromagnetic methods. Lithos 48: 57–80.
Jones, A. G., Groom, R. W., and Kurtz, R. D. (1993). Decomposition and modelling of the BC87 data set. J. Geomag. Geoelectr. 45: 1127–1150.
Jones, F. W. and Pascoe, L. J. (1971). A general computer program to determine the perturbation of alternating electric currents in a two-dimensional model of a region of uniform conductivity with an embedded inhomogeneity. Geophys. J. R. Astr. Soc. 24: 3–30.
Jones, F. W. and Pascoe, L. J.(1972). The perturbation of alternating geomagnetic fields by three-dimensional conductivity inhomogeneities. Geophys. J. R. Astr. Soc. 27: 479–485.
Jones, F. W. and Price, A. T. (1970). The perturbations of alternating geomagnetic fields by conductivity anomalies. Geophys. J. R. Astr. Soc. 20: 317–334.
Jordan, T. H. (1978). Composition and development of the continental tectosphere. Nature 274: 544–548.
Junge, A. (1990). A new telluric KCl probe using Filloux's Ag–AgCl electrode. Pure and Applied Geophysics 134: 589–598.
Junge, A. (1994) Induzierte erdelektrische Felder–neue Beobachtungen in Norddeutschland und im Bramwald. Habilitation Thesis. Göttingen.
Karato, S. (1990). The role of hydrogen in the electrical conductivity of the upper mantle. Nature 347: 272–273.
Karato, S. and Jung, H. (2003). Effects of pressure on high-temperature dislocation creep in olivine. Phil. Mag. 83, 401–414.
Kariya, K. A. and Shankland, T. J. (1983). Electrical conductivity of dry lower crustal rocks. Geophysics 48: 52–61.
Katsube, T. J. and Mareschal, M. (1993). Petrophysical model of deep electrical conductors: graphite lining as a source and its disconnection during uplift. J. Geophys. Res., 98: 8019–8030.
Keller, G. V. and Frischknecht, F. C. (1966). Electrical methods in geophysical prospecting. In International Series of Monographs in Electromagnetic Waves, 10, eds. Cullen, A. L., Fock, V. A., and Wait, J. R.. Oxford: Pergammon Press.
Kellet, R. L., Mareschal, M. and Kurtz, R. D. (1992). A model of lower crustal electrical anisotropy for the Pontiac Subprovince of the Canadian Shield. Geophys. J. Int. 111: 141–150.
Kemmerle, K. (1977). On the influence of local anomalies of conductivity at the Earth's surface on magnetotelluric data. Acta Geodaet., Geophys. et Montanist. Acad. Sci. Hung. 12: 177–181.
Key, K. and Constable, S. C. (2002). Broadband marine MT exploration of the East Pacific Rise at 9°50′N. Geophys. Res. Lett. 29: (22), 2054 doi:10.1029/2002GL016035.
Keyser, M., Ritter, J. R. R. and Jordan, M. (2002). 3D shear-wave velocity structure of the Eifel plume, Germany. Earth Planet. Sci. Lett. 203: 59–82.
Kohlstedt, D. L. and Mackwell, S. (1998). Diffusion of hydrogen and intrinsic point defects in olivine. Z. Phys. Chem. 207: 147–162.
Koslovskaya, E. and Hjelt, S.-E. (2000). Modeling of elastic and electrical properties of solid–liquid rock system with fractal microstructure. Phys. Chem. Earth (A) 25: 195–200.
Kozlovsky, Y. A. (1984). The world's deepest well. Scientific American, 251: 106–112.
Kuckes, A. F. (1973). Relations between electrical conductivity of a mantle and fluctuating magnetic fields. Geophys. J. R. Astr. Soc. 32: 119–131.
Kurtz, R. D., Craven, J. A., Niblett, E. R. and Stevens, R. A. (1993). The conductivity of the crust and mantle beneath the Kapuskasing uplift: electrical anisotropy in the upper mantle. Geophys. J. Int. 113: 483–498.
Kuvshinov, A. V., Olsen, N., Avdeev, D. B. and Pankratov, O. V. (2002). Electromagnetic induction in the oceans and the anomalous behaviour of coastal C-responses for periods up to 20 days. Geophys. Res. Lett. 29: (12), doi:10.1029/2002GL014409.
Lahiri, B. N. and Price, A. T. (1939). Electromagnetic induction in non-uniform conductors, and the determination of the conductivity of the Earth from terrestrial magnetic variations. Phil. Trans. Roy. Soc. London (A) 237: 509–540.
Large, D. J., Christy, A. G. and Fallick, A. E. (1994). Poorly crystalline carbonaceous matter in high grade metasediments: implications for graphitisation and metamorphic fluid compositions. Contrib. Mineral. Petrol. 116: 108–116.
Larsen, J. C. (1975). Low frequency (0.1–6.0 cpd) electromagnetic study of deep mantle electrical conductivity beneath the Hawaiian islands. Geophys. J. R. Astr. Soc. 43: 17–46.
Larsen, J. C., Mackie, R. L., Manzella, A., Fiordelisi, A. and Rieven, S. (1996). Robust smooth magnetotelluric transfer functions. Geophys. J. Int. 124: 801–819.
Lee, C. D., Vine, F. J. and Ross, R. G. (1983). Electrical conductivity models for the continental crust based on high grade metamorphic rocks. Geophys. J. R. Astr. Soc. 72: 353–372.
Léger, A., Mathez, E. A., Duba, A., Pineau, F. and Ginsberg, S. (1996). Carbonaceous material in metamorphosed carbonate rocks from the Waits River Formation, NE Vermont, and its effect on electrical conductivity. J. Geophys. Res., 101: 22 203–22 214.
Leibecker, J., Gatzemeier, A., Hönig, M., Kuras, O. and Soyer, W. (2002). Evidence of electrical anisotropic structures in the lower crust and the upper mantle beneath the Rhenish Shield. Earth Planet Sci. Lett. 202: 289–302.
Li, S., Unsworth, M., Booker, J. R., Wie, W., Tan, H. and Jones, A. G. (2003). Partial melt or aqueous fluid in the mid-crust of Southern Tibet? Constraints from INDEPTH magnetotelluric data. Geophys. J. Int. 153: 289–304.
Lines, L. R. and Jones, F. W. (1973). The perturbation of alternating geomagnetic fields by three-dimensional island structures. Geophys. J. R. Astr. Soc. 32: 133–154.
Lizzaralde, D., Chave, A., Hirth, G. and Schultz, A. (1995). Northeastern Pacific mantle conductivity profile from long-period magnetotelluric sounding using Hawaii-to-California submarine cable data. J. Geophys. Res. 100: 17837–17854.
Mackie, R. L., Bennett, B. R. and Madden, T. R. (1988). Long-period MT measurements near the central California coast: a land-locked view of the conductivity structure under the Pacific ocean. J. Geophys. Res. 95: 181–194.
Mackie, R. L. and Madden, T. R. (1993). Conjugate direction relaxation solutions for 3D magnetotelluric modelling. Geophysics 58: 1052–1057.
Mackie, R. L., Madden, T. R. and Wannamaker, P. E. (1993). Three-dimensional magnetotelluric modeling using difference equations – Theory and comparisons to integral equation solutions. Geophysics 58: 215–226.
Mackie, R. L., Rieven, S. and Rodi, W. (1997). Users Manual and Software Documentation for Two-Dimensional Inversion of Magnetotelluric Data. San Francisco: GSY-USA Inc.
Mackwell, S. J. and Kohlstedt, D. L. (1990). Diffusion of hydrogen in olivine: implications for water in the mantle. J. Geophys. Res. 95: 5079–5088.
Madden, T. R. (1976). Random networks and mixing laws. Geophysics, 41: 1104–1125.
Madden, T. and Nelson, P. (1964, reprinted 1986). A defence of Cagniard's magnetotelluric method. In Society of Exploration Geophysicists, Geophysics Reprint Series, No. 5., ed. Vozoff, K..
Manoj, C. and Nagarajan, N. (2003). The application of artificial neural networks to magnetotelluric time-series analysis. Geophys. J. Int. 153: 409–423.
Mareschal, M. (1986). Modelling of natural sources of magnetospheric origin in the interpretation of regional studies: a review. Surv. Geophys. 8: 261–300.
Mareschal, M., Fyfe, W. S., Percival, J. and Chan, T. (1992). Grain-boundary graphite in Kapuskasing gneisses and implication for lower crustal conductivity. Nature 357: 674–676.
Mareschal, M., Kellett, R. L., Kurtz, R. D., Ludden, J. N. and Bailey, R. C. (1995). Archean cratonic roots, mantle shear zones and deep electrical anisotropy. Nature 375: 134–137.
Mareschal, M., Kurtz, R. D., Chouteau, M. and Chakridi, R. (1991). A magnetotelluric survey on Manitoulin Island and Bruce Peninsula along GLIMPCE seismic line J: black shales mask the Grenville Front. Geophys. J. Int. 105: 173–183.
Masero, W., Fischer, G. and Schnegg, P.-A. (1997). Electrical conductivity and crustal deformation from magnetotelluric results in the region of the Araguainha impact, Brazil. Phys. Earth Planet. Inter. 101: 271–289.
Mathez, E. A., Duba, A. G., Peach, C. L., Léger, A., Shankland, T. J. and Plafker, G. (1995). Electrical conductivity and carbon in metamorphic rocks of the Yukon-Tanana Terrane, Alaska. J. Geophys. Res., 196: 10187–10196.
Mathur, S. P. (1983). Deep crustal reflection results from the central Eromanga Basin, Australia. Tectonophysics 100: 163–173.
Matsumoto, T., Honda, M., McDougall, I., Yatsevich, I. and O'Reilly, S. (1997). Plume-like neon in a metasomatic apatite from the Australian lithospheric mantle. Nature 388: 162–164.
McKenzie, D. (1979). Finite deformation during fluid flow. Geophys. J. R. Astr. Soc. 58: 689–715.
Meju, M. A. (1996). Joint inversion of TEM and distorted MT soundings: some effective practical considerations. Geophysics 61: 56–65.
Meju, M. A.(2002). Geoelectromagnetic exploration for natural resources: models, case studies and challenges. Surv. Geophys. 23: 133–206.
Meju, M. A.Fontes, S. L., Oliveira, M. F. B., Lima, J. P. R., Ulugergerli, E. U. and Carrasquilla, A. A. (1999). Regional aquifer mapping using combined VES-TEM-AMT / EMAP methods in the semiarid eastern margin of Parnaiba Basin, Brazil. Geophysics 64: 337–356.
Merzer, A. M. and Klemperer, S. L. (1992). High electrical conductivity in a model lower crust with unconnected, conductive, seismically reflective layers. Geophys. J. Int. 108: 895–905.
Morris, J. D., Leeman, W. P. and Tera, F. (1990). The subducted component in island arc lavas: constraints from Be isotopes and B–Be systematics. Nature 344: 31–36.
Nelson, K. D. (1991). A unified view of craton evolution motivated by recent deep seismic reflection and refraction results. Geophys. J. Int. 105: 25–35.
Nesbitt, B. E. (1993). Electrical resistivities of crustal fluids. J. Geophys. Res. 98: 4301–4310.
Newton, R. C., Smith, J. V. and Windley, B. F. (1980). Carbonic metamorphism, granulites and crustal growth. Nature 288: 45–50.
Nolasco, R., Tarits, P., Filloux, J. H. and Chave, A. D. (1998). Magnetotelluric imaging of the Society Island hotspot. J. Geophys. Res. 103: 30287–30309.
Oettinger, G., Haak, V. and Larsen, J. C. (2001). Noise reduction in magnetotelluric time-series with a new signal-noise separation method and its application to a field experiment in the Saxonian Granulite Massif. Geophys. J. Int. 146: 659–669.
Ogawa, Y. and Uchida, T. (1996). A two-dimensional magnetotelluric inversion assuming Gaussian static shift. Geophys. J. Int. 126: 69–76.
Ogunade, S. O. (1995). Analysis of geomagnetic variations in south-western Nigeria. Geophys. J. Int. 121: 162–172.
Olsen, N. (1998). The electrical conductivity of the mantle beneath Europe derived from C-responses from 3 to 720 hr. Geophys. J. Int. 133: 298–308.
Olsen, N.(1999). Induction studies with satellite data. Surv. Geophys. 20: 309–340.
Osipova, I. L., Hjelt, S. -E. and Vanyan, L. L. (1989). Source field problems in northern parts of the Baltic Shield. Phys. Earth Planet. Inter. 53: 337–342.
Otnes, R. K. and Enochson, L. (1972). Digital Time Series Analysis. New York: John Wiley & Sons.
Padovani, E. and Carter, J. (1977). Aspects of the deep crustal evolution beneath south central New Mexico. In The Earth's Crust: Its Nature and Physical Properties, ed. Heacock, J. G., Amer. Geophys. Union Monogr. Series, 20: 19–55.
Pádua, M. B., Padilha, A. L. and Vitorello, Í. (2002). Disturbances on magnetotelluric data due to DC electrified railway: a case study from southeastern Brazil. Earth, Planets and Space 54: 591–596.
Park, S. K. (1985). Distortion of magnetotelluric sounding curves by three-dimensional structures. Geophysics 50: 785–797.
Parker, E. N. (1958). Dynamics of the interplanetary gas and magnetic field. Astrophys. J. 128: 664–676.
Parker, R. L. (1980). The inverse problem of electromagnetic induction: existence and construction of solutions based on incomplete data. J. Geophys. Res. 85: 4421–4428.
Parker, R. L. and Whaler, K. A. (1981). Numerical methods for establishing solutions to the inverse problem of electromagnetic induction. J. Geophys. Res. 86: 9574–9584.
Parkinson, W. (1959). Directions of rapid geomagnetic variations. Geophys. J. R. Astr. Soc. 2: 1–14.
Parkinson, W. (1971). An analysis of the geomagnetic diurnal variation during the IGY. Gerlands Beitr. Geophys. 80: 199–232.
Parzen, E. (1961). Mathematical considerations in the estimation of spectra: comments on the discussion of Messers, Tukey and Goodman. Technometrics 3: 167–190, 232–234.
Parzen, E. (1992). Modern Probability Theory and its Applications. New York: John Wiley & Sons.
Pek, J. and Verner, T. (1997). Finite-difference modelling of magnetotelluric fields in two-dimensional anisotropic media. Geophys. J. Int. 128: 505–521.
Petiau, G. and Dupis, A. (1980). Noise, temperature coefficient and long time stability of electrodes for telluric observations. Geophys. Prosp. 28: 792–804.
Pous, J., Heise, W., Schnegg, P. -A., Munoz, G., Marti, J. and Soriano, C. (2002). Magnetotelluric study of Las Cañadas caldera (Tenerife, Canary Islands): structural and hydrogeological implications. Earth Planet. Sci. Lett. 204: 249–263.
Prácser, E. and Szarka, L. (1999). A correction to Bahr's ‘phase deviation’ method for tensor decomposition. Earth, Planets and Space 51: 1019–1022.
Praus, O., Pecova, J., Petr, V, Babuska, V. and Plomerova, J. (1990). Magnetotelluric and seismological determination of the lithosphere–asthenosphere transition in Central Europe. Phys. Earth Planet. Inter. 60: 212–228.
Presnall, D. C., Simmons, C. L.Porath, H. (1972). Changes in electriacal conductivitty of a syenthetic basalt during melting. J. Geophys. Res. 77: 5665–5672.
Price, A. T. (1962). The theory of magnetotelluric fields when the source field is considered. J. Geophys. Res. 67: 1907–1918.
Primdahl, F. (1979). The fluxgate magnetometer. J. Phys. E: Sci. Instrum. 12: 241–253.
Raiche, A. P. (1974). An integral equation approach to three-dimensional modelling. Geophys. J. R. Astr. Soc. 36: 363–376.
Ranganayaki, R. P. (1984). An interpretative analysis of magnetotelluric data. Geophysics 49: 1730–1748.
Ranganayaki, R. P. and Madden, T. R. (1980). Generalized thin sheet analysis in magnetotellurics: an extension of Price's analysis. Geophys. J. R. Astr. Soc. 60: 445–457.
Rangarajan, G. K. (1989). Indices of geomagnetic activity. In Geomagnetism, Volume 3, ed. Jacobs, J. A.. London: Academic Press, pp. 323–384.
Rauen, A. and Laštovičková, M. (1995). Investigation of electrical anisotropy in the deep borehole KTB. Surv. Geophys. 16: 37–46
Reddy, I. K., Rankin, D. and Phillips, R. J. (1977). Three-dimensional modelling in magnetotelluric and magnetic variational sounding. Geophys. J. R. Astr. Soc. 51: 313–325.
Reynolds, J. M. (1997). An Introduction to Applied and Environmental Geophysics. New York: John Wiley & Sons.
Ribe, N. M. (1989). Seismic anisotropy and mantle flow. J. Geophys. Res. 94: 4213–4223.
Ritter, P. and Banks, R. J. (1998). Separation of local and regional information in distorted GDS response functions by hypothetical event analysis. Geophys. J. Int. 135: 923–942.
Ritter, J. R. R., Jordan, M., Christensen, U. R. and Achauer, U. (2001). A mantle plume below the Eifel volcanic fields, Germany. Earth Planet. Sci. Lett. 186: 7–14.
Roberts, J. J., Duba, A. G., Mathez, E. A., Shankland, T. J. and Kinsler, R. (1999). Carbon-enhanced electrical conductivity during fracture of rocks. J. Geophys. Res. 104: 737–747.
Roberts, J. J. and Tyburczy, J. A. (1991). Frequency-dependent electrical properties of polycrystalline olivine compacts. J. Geophys. Res. 96: 16205–16222.
Roberts, J. J. and Tyburczy, J. A. (1999). Partial-melt electrical conductivity: influence of melt-composition. J. Geophys. Res. 104: 7055–7065.
Ross, J. V. and Bustin, R. M. (1990). The role of strain energy in creep graphitisation of anthracite. Nature 343: 58–60.
Rumble, D. R. and Hoering, T. C. (1986). Carbon isotope geochemistry of graphite vein deposits from New Hampshire, U.S.A. Geochim. Cosmochim. Acta 50: 1239–1247.
Schilling, F. R., Partzsch, G. M., Brasse, H. and Schwarz, G. (1997). Partial melting below the magmatic arc in the central Andes deduced from geoelectromagnetic field experiments and laboratory data. Phys. Earth Planet. Inter. 103: 17–31.
Schmeling, H. (1985). Numerical models on the influence of partial melt on elastic, anelastic and electrical properties of rocks. Part I: elasticity and anelasticity. Phys. Earth Planet. Inter. 41: 105–110.
Schmeling, H.(1986). Numerical models on the influence of partial melt on elastic, anelastic and electrical properties of rocks. Part II: electrical conductivity. Phys. Earth Planet. Inter. 43: 123–136.
Schmucker, U. (1970). Anomalies of geomagnetic variations in the Southwestern United States. Bull. Scripps Inst. Ocean., University of California, 13.
Schmucker, U.(1973). Regional induction studies: a review of methods and results. Phys. Earth Planet. Inter. 7: 365–378.
Schmucker, U.(1978). Auswertungsverfahren Göttingen. In Protokoll Kolloquium Elektromagnetische Tiefenforschung, eds. Haak, V. and Homilius, J.. Free University Berlin, pp. 163–189.
Schmucker, U.(1987). Substitute conductors for electromagnetic response estimates. Pure and Appl. Geophys. 125: 341–367.
Schmucker, U.(1995). Electromagnetic induction in thin sheets: integral equations and model studies in two dimensions. Geophys. J. Int. 121: 173–190.
Schultz, A., Kurtz, R. D., Chave, A. D. and Jones, A. G. (1993). Conductivity discontinuities in the upper mantle beneath a stable craton. Geophys. Res. Lett. 20: 2941–2944.
Schuster, A. (1889). The diurnal variation of terrestrial magnetism. Phil. Trans. Roy. Soc. London A210: 467–518.
Sénéchal, R., Rondenay, G. S., Mareschal, M., Guilbert, J. and Poupinet, G. (1996). Seismic and electrical anisotropies in the lithosphere across the Grenville Front, Canada. Geophys. Res. Lett. 23: 2255–2258.
Shankland, T. J. and Ander, M. E. (1983). Electrical conductivity, temperatures, and fluids in the lower crust. J. Geophys. Res. 88: 9475–9484.
Shankland, T. J., Duba, A., Mathez, E. A. and Peach, C. L. (1997). Increase of electrical conductivity with pressure as an indication of conduction through a solid phase in mid-crustal rocks. J. Geophys. Res. 102: 14741–14750.
Shankland, T. J., Peyronneau, J. and Poirier, J. -P. (1993). Electrical conductivity of the Earth's lower mantle. Nature 366: 453–455.
Shankland, T. J. and Waff, H. S. (1977). Partial melting and electrical conductivity anomalies in the upper mantle. J. Geophys. Res. 82: 5409–5417.
Siegesmund, S., Vollbrecht, A. and Nover, G. (1991). Anisotropy of compressional wave velocities, complex electrical resistivity and magnetic susceptibility of mylonites from the deeper crust and their relation to the rock fabric. Earth Planet. Sci. Lett. 105: 247–259.
Siemon, B. (1997). An interpretation technique for superimposed induction anomalies. Geophys. J. Int. 130: 73–88.
Simpson, F. (1999). Stress and seismicity in the lower continental crust: a challenge to simple ductility and implications for electrical conductivity mechanisms. Surveys in Geophysics 20: 201–227.
Simpson, F.(2000). A three-dimensional electromagnetic model of the southern Kenya Rift: departure from two-dimensionality as a possible consequence of a rotating stress field. J. Geophys. Res. 105: 19321–19334.
Simpson, F.(2001a). Fluid trapping at the brittle–ductile transition re-examined. Geofluids 1: 123–136.
Simpson, F.(2001b). Resistance to mantle flow inferred from the electromagnetic strike of the Australian upper mantle. Nature 412: 632–635.
Simpson, F.(2002a). Intensity and direction of lattice-preferred orientation of olivine: are electrical and seismic anisotropies of the Australian mantle reconcilable? Earth Planet Sci. Lett. 203: 535–547.
Simpson, F.(2002b). A comparison of electromagnetic distortion and resolution of upper mantle conductivities beneath continental Europe and the Mediterranean using islands as windows. Phys. Earth Planet. Inter. 129: 117–130.
Simpson, F. and Warner, M. (1998). Coincident magnetotelluric, P-wave and S-wave images of the deep continental crust beneath the Weardale granite, NE England: seismic layering, low conductance and implications against the fluids paradigm. Geophys. J. Int. 133: 419–434.
Sims, W. E., Bostick, F. X. Jr. and Smith, H. W. (1971). The estimation of magnetotelluric impedance tensor elements from measured data. Geophysics 36: 938–942.
Smith, T. and Booker, J. (1988). Magnetotelluric inversion for minimum structure. Geophysics 53: 1565–1576.
Smith, T. and Booker, J.(1991). Rapid inversion of two- and three-dimensional magnetotelluric data. J. Geophys. Res., 96: 3905–3922.
Soyer, W. and Brasse, H. (2001). A magneto-variation array study in the central Andes of N Chile and SW Bolivia. Geophys. Res. Lett. 28: 3023–3026.
Spitzer, K. (1993). Observations of geomagnetic pulsations and variations with a new borehole magnetometer down to depths of 3000 m. Geophys. J. Int. 115: 839–848.
Spitzer, K.(1995). A 3-D finite difference algorithm for dc resistivity modelling using conjugate gradient methods. Geophys. J. Int. 123: 903–914.
Srivastava, S. P. (1965). Methods of interpretation of magnetotelluric data when the source field is considered. J. Geophys. Res. 70: 945–954.
Stacey, F. D. (1992). Physics of the Earth. Brisbane: Brookfield Press.
Stalder, R. and Skogby, H. (2003). Hydrogen diffusion in natural and synthetic orthopyroxene. Phys. Chem. Minerals 30: 12–19.
Stanley, W. D. (1989). Comparison of geoelectrical/tectonic models for suture zones in the western U.S.A. and eastern Europe: are black shales a possible source of high conductivities? Phys. Earth Planet. Inter. 53: 228–238.
Stauffer, D. and Aharony, A. (1992). Introduction to Percolation Theory, 2nd edn. London: Taylor and Francis.
Sternberg, B. K., Washburne, J. C. and Pellerin, L. (1988). Correction for the static shift in magnetotellurics using transient electromagnetic soundings. Geophysics 53: 1459–1468.
Stesky, R. M. and Brace, W. F. (1973). Electrical conductivity of serpentinized rocks to 6 kilobars. J. Geophys. Res. 78: 7614–7621.
Stoerzel, A. (1996). Estimation of geomagnetic transfer functions from non-uniform magnetic fields induced by the equatorial electrojet: a method to determine static shifts in magnetotelluric data. J. Geophys. Res. 101: 917–927.
Strack, K. M. (1992). Exploration with Deep Transient Electromagnetics. Amsterdam: Elsevier.
Swift, C. M. (1967). A magnetotelluric investigation of an electrical conductivity anomaly in the South Western United States. Ph.D. Thesis, M.I.T., Cambridge, Mass.
Swift, C. M.(1986). A magnetotelluric investigation of an electrical conductivity anomaly in the South Western United States. In Magnetotelluric Methods, ed. Vozoff, K.. Tulsa: Society of Exploration Geophysicists, pp. 156–166.
Tikhonov, A. N. (1950). The determination of the electrical properties of deep layers of the Earth's crust. Dokl. Acad. Nauk. SSR 73: 295–297 (in Russian).
Tikhonov, A. N.(1986). On determining electrical characteristics of the deep layers of the Earth's crust. In Magnetotelluric Methods, ed. Vozoff, K.. Tulsa: Society of Exploration Geophysicists, pp. 2–3.
Ting, S. C. and Hohmann, G. W. (1981). Integral equation modeling of three-dimensional magnetotelluric response. Geophysics 46: 182–197.
Tipler, P. A. (1991). Physics for Scientists and Engineers. New York: Worth Publishers.
Torres-Verdin, C. and Bostick, F. X. (1992). Principles of spatial surface electric field filtering in magnetotellurics: electromagnetic array profiling (EMAP). Geophysics 57: 603–622.
Touret, J. (1986). Fluid inclusions in rocks from the lower continental crust. In The Nature of the Lower Continental Crust, eds. Dawson, J. B., Carswell, D. A., Hall, J. and Wedepohl, K. H.. Geological Society Special Publication24: 161–172. Oxford: Blackwell Scientific Publications.
Tyburczy, J. A. and Waff, H. S. (1983). Electrical conductivity of molten basalt and andersite to 25 kilobars pressure: geophysical significance and implications for charge transport and melt structure. J. Geophys. Res. 88: 2413–2430.
Valdivia, J. A., Sharma, A. S. and Papadopoulos, K. (1996). Prediction of magnetic storms by nonlinear models. Geophys. Res. Lett. 23: 2899–2902.
Vanyan, L. L. and Gliko, A. O. (1999). Seismic and electromagnetic evidence of dehydration as a free water source in the reactivated crust. Geophys. J. Int. 137: 159–162.
Vasseur, G. and Weidelt, P. (1977). Bimodal electromagnetic induction in non-uniform thin sheets with an application to the northern Pyrenean induction anomaly. Geophys. J. R. Astr. Soc. 51: 669–690.
Vozoff, K. (1972). The magnetotelluric method in the exploration of sedimentary basins. Geophysics 37: 98–141.
Waff, H. S. (1974). Theoretical considerations on electrical conductivity in a partially molten mantle and implications for geothermometry. J. Geophys. Res. 79: 4003–4010.
Wait, J. R. (1954). On the relation between telluric currents and the Earth's magnetic field. Geophysics 19: 281–289.
Wang, L. J. and Lilley, F. E. M. (1999). Inversion of magnetometer array data by thin-sheet modelling. Geophys. J. Int. 137: 128–138.
Wang, L., Zhang, Y. and Essene, E. (1996). Diffusion of the hydrous component in pyrope. Amer. Mineral. 81: 706–718.
Wannamaker, P. E., Hohmann, G. W. and Ward, S. H. (1984a). Magnetotelluric responses of three-dimensional bodies in layered Earths. Geophysics 49: 1517–1533.
Wannamaker, P. E., Hohmann, G. W. and San Filipo, W. A. (1984b). Electromagnetic modelling of three-dimensional bodies in layered Earths using integral equations. Geophysics 48: 1402–1405.
Wannamaker, P. E., Stodt, J. A. and Rijo, L. (1986). A stable finite element solution for two-dimensional magnetotelluric modelling. Geophys. J. R. Astr. Soc. 88: 277–296.
Wannamaker, P. E. (2000). Comment on ‘The petrological case for a dry lower crust’ by Bruce W. D. Yardley and John W. Valley. J. Geophys. Res. 105: 6057–6064.
Weaver, J. T. (1994). Mathematical Methods for Geo-Electromagnetic Induction. Taunton, Somerset, UK: Research Studies Press Ltd.
Wei, W., Unsworth, M., Jones, A. G.et al. (2001). Detection of widespread fluids in the Tibetan crust by magnetotelluric studies. Science 292: 716–718.
Weidelt, P. (1972). The inverse problem of geomagnetic induction. Z. Geophys. 38: 257–289.
Weidelt, P.(1975). Electromagnetic induction in three-dimensional structures. J. Geophys. Res. 41: 85–109.
Weidelt, P.(1985). Construction of conductance bounds from magnetotelluric impedances. J. Geophys. 57: 191–206.
Wiese, H. (1962). Geomagnetische tiefensondierung. Teil II: Die Streichrichtung der Untergrundstrukturen des elektrischen Widerstandes, erschlossen aus geomagnetischen variationen. Geofis. Pura et Appl. 52: 83–103.
Winch, D. E. (1981). Spherical harmonic analysis of geomagnetic tides, 1964–1965. Phil. Trans. Roy. Soc. Lond. A303: 1–104.
Woods, S. C., Mackwell, S. and Dyar, D. (2000). Hydrogen in diopside: diffusion profiles. Amer. Mineral. 85: 480–487.
Xu, Y., Poe, B. T., Shankland, T. J. and Rubie, D. C. (1998). Electrical conductivity of olivine, wadsleyite, and ringwoodite under upper-mantle conditions. Science 280: 1415–1418.
Xu, Y. and Shankland, T. J. (1999). Electrical conductivity of orthopyroxene and its high pressure phases. Geophys. Res. Lett. 26: 2645–2648.
Xu, Y., Shankland, T. J. and Poe, B. T. (2000). Laboratory-based electrical conductivity in the Earth's mantle. J. Geophys. Res. 105: 27865–27875.
Yardley, B. W. D. (1986). Is there water in the deep continental crust? Nature 323: 111.
Yardley, B. W. D. and Valley, J. W. (1997). The petrological case for a dry lower crust. J. Geophys. Res. 102: 12173–12185.
Yardley, B. W. D. and Valley, J. W. (2000). Reply to Wannamaker (2000) “Comment on ‘The petrological case for a dry lower crust’”J. Geophys. Res. 105: 6065–6068.
Zhdanov, M. S., Varentsov, I. M., Weaver, J. T., Golubev, N. G. and Krylov, V. A. (1997). Methods for modelling electromagnetic fields. Results from COMMEMI – the international project on the comparison of modelling methods for electromagnetic induction. J. Appl. Geophys. 37: 133–271.
Zhang, P., Pedersen, L. B., Mareschal, M. and Chouteau, M. (1993). Channelling contribution to tipper vectors: a magnetic equivalent to electrical distortion. Geophys. J. Int. 113: 693–700.
Zonge, K. L. and Hughes, L. H. (1991). Controlled-source audio-frequency magnetotellurics. In Electromagnetic Methods in Applied Geophysics. Volume 2: Applications, Part B., ed. Nabighian, M. C.. Tulsa: Society of Exploration Geophysicists, pp. 713–809.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.