Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-06-02T10:28:53.979Z Has data issue: false hasContentIssue false

10 - Bioceramic scaffolds

from Part II - Porous scaffolds for regenerative medicine

Published online by Cambridge University Press:  05 February 2015

Zhanwen Xiao
Affiliation:
Sichuan University
Zhe Wang
Affiliation:
Drexel University
Bangcheng Yang
Affiliation:
Sichuan University
Xingdong Zhang
Affiliation:
Sichuan University
Peter X. Ma
Affiliation:
University of Michigan, Ann Arbor
Get access

Summary

Introduction

Global demand for bone grafts has been increasing rapidly in recent years. In particular, an increase in the elderly population worldwide at an annual rate of more than 5% has led to a rapid increase in the bone-diseased population because the elderly suffer easily from osteoporotic fractures, degenerative scoliosis, and degenerative spondylolisthesis [1].

Bone is a complex biomineralized organ with an intricate hierarchical microstructure assembled through the deposition of apatite minerals on collagenous matrix [2], and is able to self-heal a small defect. However, the self-healing is less effective for a large defect. For this, bone grafting is required in orthopaedic surgery.

Bone grafting is a surgical procedure that introduces new bone or a substitution material (bone graft) into defects in bone or around broken bone to help bone healing. Depending on the source of bone grafts, they may be roughly divided into autologous bone grafts (autografts), allografts and artificial (synthetic) bone grafts. These bone grafts have their own particular advantages and drawbacks. Theoretically, an autograft should be the best choice because the bone graft is the patient’s own bone, taken frequently from his/her hip bone or pelvis, which renders clear advantages such as a mechanical match with the damaged bone, excellent osteogenic potential, and immune safety [3]. Nevertheless, the principal disadvantage of using autograft bone is that the patient needs to bear additional chronic pain at the incision site, runs potential risks such as infection, additional blood loss, and morbidity, and must bear a longer operation duration and higher costs [4]. Therefore, the other approaches are becoming popular.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Mauck, K. F. and Clarke, B. L. 2006. Diagnosis, screening, prevention, and treatment of osteoporosis. Mayo Clinic Proc., 662–72.
Service, R. F. 2000 Tissue engineers build new bone. Science, 289, 1498–500.CrossRefGoogle ScholarPubMed
LeGeros, R. Z. 2002. Properties of osteoconductive biomaterials: calcium phosphates. Clin. Orthopaedics Related Res., 395, 81–98.CrossRefGoogle Scholar
Banwart, J. C., Asher, M. A. and Hassanein, R. S. 1995. Iliac crest bone graft harvest donor site morbidity: a statistical evaluation. Spine, 20, 1055.CrossRefGoogle ScholarPubMed
Costantino, P. D. and Friedman, C. D. 1994. Synthetic bone graft substitutes. Otolaryngol. Clinics North America, 27, 1037.Google ScholarPubMed
Damien, C. J. and Parsons, J. R. 1991. Bone graft and bone graft substitutes: a review of current technology and applications. J. Appl. Biomater., 2, 187–208.CrossRefGoogle ScholarPubMed
Langer, R. and Vacanti, J. P. 1993. Tissue engineering. Science, 260, 920–6.CrossRefGoogle ScholarPubMed
Rose, F. R. A. J. and Oreffo, R. O. C. 2002. Bone tissue engineering: hope vs hype. Biochem. Biophys. Res. Commun., 292, 1–7.CrossRefGoogle ScholarPubMed
Crane, G. M., Ishaug, S. L. and Mikos, A. G. 1995. Bone tissue engineering. Nature Med., 1, 1322–4.CrossRefGoogle ScholarPubMed
Minuth, W. W., Sittinger, M. and Kloth, S. 1997. Tissue engineering: generation of differentiated artificial tissues for biomedical applications. Cell Tissue Res., 291, 1–11.CrossRefGoogle Scholar
Jones, J. and Hench, L. 2001. Biomedical materials for new millennium: perspective on the future. Mater. Sci. Technol., 17, 891–900.CrossRefGoogle Scholar
Ripamonti, U. 1996. Osteoinduction in porous hydroxyapatite implanted in heterotopic sites of different animal models. Biomaterials, 17, 31–5.CrossRefGoogle ScholarPubMed
Yuan, H., Van Blitterswijk, C., De Groot, K. and De Bruijn, J. 2006. A comparison of bone formation in biphasic calcium phosphate (BCP) and hydroxyapatite (HA) implanted in muscle and bone of dogs at different time periods. J. Biomed. Mater. Res. Part A, 78, 139–47.CrossRefGoogle ScholarPubMed
Fujibayashi, S., Shikata, J., Tanaka, C., Matsushita, M. and Nakamura, T. 2001. Lumbar posterolateral fusion with biphasic calcium phosphate ceramic. J. Spinal Disorders Techniques, 14, 214–21.CrossRefGoogle ScholarPubMed
Kitsugi, T., Nakamura, T., Yamamura, T. et al. 1987. SEM–EPMA observation of three types of apatite-containing glass ceramics implanted in bone: the variance of a Ca-P-rich layer. J. Biomed. Mater. Res., 21, 1255–71.CrossRefGoogle ScholarPubMed
Yamasaki, H. 1990. Heterotopic bone formation around porous hydroxyapatite ceramics in the subcutis of dogs. Jap. J. Oral Biol., 32, 190–2.CrossRefGoogle Scholar
Yamasaki, H. and Sakai, H. 1992. Osteogenic response to porous hydroxyapatite ceramics under the skin of dogs. Biomaterials, 13, 308–12.CrossRefGoogle ScholarPubMed
Yuan, H., Yang, Z., de Bruijn, J. D., de Groot, K. and Zhang, X. 2001. Material-dependent bone induction by calcium phosphate ceramics: a 2.5-year study in dog. Biomaterials, 22, 2617–23.CrossRefGoogle Scholar
Yuan, H., Van Den Doel, M., Li, S. et al. 2002. A comparison of the osteoinductive potential of two calcium phosphate ceramics implanted intramuscularly in goats. J. Mater. Sci.: Mater. Med., 13, 1271–5.Google ScholarPubMed
Yuan, H., Kurashina, K., de Bruijn, J. D. et al. 1999. A preliminary study on osteoinduction of two kinds of calcium phosphate ceramics. Biomaterials, 20, 1799–806.CrossRefGoogle ScholarPubMed
Cao, W. and Hench, L. L. 1996. Bioactive materials. Ceramics Int., 22, 493–507.CrossRefGoogle Scholar
Boutin, P. 1972. Arthroplastie total de la hanche par prothèse en alumine frittée. Rev. Chirurgie Orthopédique Réparatrice Appareil Moteur, 58, 229–246.Google Scholar
Lusty, P., Tai, C., Sew-Hoy, R. et al. 2007. Third-generation alumina-on-alumina ceramic bearings in cementless total hip arthroplasty. J. Bone Joint Surgery, 89, 2676–83.CrossRefGoogle ScholarPubMed
D’Antonio, J., Capello, W., Manley, M. and Bierbaum, B. 2000. New experience with alumina-on-alumina ceramic bearings for total hip arthroplasty. J. Arthroplasty, 17, 390–7.CrossRefGoogle Scholar
Kim, Y.-H., Kim, J.-S., Choi, Y.-W. and Kwon, O.-R. 2009. Intermediate results of simultaneous alumina-on-alumina bearing and alumina-on-highly cross-linked polyethylene bearing total hip arthroplasties. J. Arthroplasty, 24, 885–91.CrossRefGoogle ScholarPubMed
Klopčič, S. B., Kovač, J. and Kosmač, T. 2007. Apatite-forming ability of alumina and zirconia ceramics in a supersaturated Ca/P solution. Biomolec. Eng., 24, 467–71.CrossRefGoogle Scholar
Hench, L., Splinter, R., Allen, W. and Greenlee, T. 1971. Mechanisms of interfacial bonding between ceramics and bone. J. Biomed. Mater. Res., 2, 485.Google Scholar
Hench, L. L. and Paschall, H. 1973. Direct chemical bond of bioactive glass-ceramic Materials to bone and muscle. J. Biomed. Mater. Res., 7, 25–42.CrossRefGoogle Scholar
Nuss, K. M. and von Rechenberg, B. 2008. Biocompatibility issues with modern implants in bone – a review for clinical orthopedics. Open Orthopaedics J., 2, 66.CrossRefGoogle Scholar
Cypher, T. J. and Grossman, J. P. 1996. Biological principles of bone graft healing. J. Foot Ankle Surgery, 35, 413–17.CrossRefGoogle ScholarPubMed
Anderson, J. M., Rodriguez, A. and Chang, D. T. 2008. Foreign body reaction to biomaterials. Seminars in Immunology: NIH Public Access, p. 86.
Anderson, J. M. 2001. Biological responses to materials. Ann. Rev. Mater. Res., 31, 81–110.CrossRefGoogle Scholar
Martin, P. and Leibovich, S. J. 2005. Inflammatory cells during wound repair: the good, the bad and the ugly. Trends Cell Biol., 15, 599–607.CrossRefGoogle ScholarPubMed
George Broughton, I., Janis, J. E. and Attinger, C. E. 2006. Wound healing: an overview. Plastic Reconstructive Surgery, 117, 1e-S–32e-S.Google ScholarPubMed
Fujiwara, N. and Kobayashi, K. 2005. Macrophages in inflammation. Current Drug Targets – Inflammation Allergy, 4, 281–6.CrossRefGoogle ScholarPubMed
Luttikhuizen, D. T., Harmsen, M. C. and Luyn, M. J. V. 2006. Cellular and molecular dynamics in the foreign body reaction. Tissue Eng., 12, 1955–70.CrossRefGoogle ScholarPubMed
Hench, L. L. and West, J. K. 1996. Biological applications of bioactive glasses. Life Chem. Rep., 13, 187–241.Google Scholar
Clark, A., Hench, L. and Paschall, H. 1976. The influence of surface chemistry on implant interface histology: a theoretical basis for implant materials selection. J. Biomed. Mater. Res., 10, 161–74.CrossRefGoogle ScholarPubMed
Hench, L. L. 1998. Bioceramics. J. Am. Ceram. Soc., 81, 1705–28.CrossRefGoogle Scholar
Hench, L. L. and Polak, J. M. 2002. Third-generation biomedical materials. Science, 295, 1014–17.CrossRefGoogle ScholarPubMed
Rehman, I., Hench, L., Bonfield, W. and Smith, R. 1994. Analysis of surface layers on bioactive glasses. Biomaterials, 15, 865–70.CrossRefGoogle ScholarPubMed
Varila, L., Fagerlund, S., Lehtonen, T., Tuominen, J. and Hupa, L. 2012. Surface reactions of bioactive glasses in buffered solutions. J. Eur. Ceram. Soc., 32, 2757–63.CrossRefGoogle Scholar
Hench, L. 2000. The challenge of orthopaedic materials. Current Orthopaedics, 14, 7–15.CrossRefGoogle Scholar
Hench, L., Hench, J. W. and Greenspan, D. 2004. Bioglass: a short history and bibliography. J. Australasian Ceram. Soc., 40, 1–42.Google Scholar
Park, S.-Y., Bae, D.-J., Kim, M.-J., Piao, M. L. and Kim, I.-S. 2012. Extracellular low pH modulates phosphatidylserine-dependent phagocytosis in macrophages by increasing stabilin-1 expression. J. Biol. Chem., 287, 11261–71.CrossRefGoogle Scholar
Lu, X. and Leng, Y. 2005. Theoretical analysis of calcium phosphate precipitation in simulated body fluid. Biomaterials, 26, 1097–108.CrossRefGoogle ScholarPubMed
Zhang, D., Hupa, M. and Hupa, L. 2008. In situ pH within particle beds of bioactive glasses. Acta Biomater., 4, 1498–505.CrossRefGoogle ScholarPubMed
Damen, J. and Ten Cate, J. 1989. The effect of silicic acid on calcium phosphate precipitation. J. Dental Res., 68, 1355–9.CrossRefGoogle ScholarPubMed
Damen, J. and Ten Cate, J. 1992. Silica-induced precipitation of calcium phosphate in the presence of inhibitors of hydroxyapatite formation. J. Dental Res., 71, 453–7.CrossRefGoogle ScholarPubMed
Calvert, P. and Mann, S. 1997. The negative side of crystal growth. Nature, 386, 127–9.CrossRefGoogle Scholar
Zhu, P., Masuda, Y. and Koumoto, K. 2004. The effect of surface charge on hydroxyapatite nucleation. Biomaterials, 25, 3915–21.CrossRefGoogle ScholarPubMed
Lu, H. H., Pollack, S. R. and Ducheyne, P. 2000. Temporal zeta potential variations of 45S5 bioactive glass immersed in an electrolyte solution. J. Biomed. Mater. Res., 51, 80–7.3.0.CO;2-6>CrossRefGoogle Scholar
Ohtsuki, C., Kokubo, T. and Yamamuro, T. 1992. Mechanism of apatite formation on CaOSiO2–P2O5 glasses in a simulated body fluid. J. Non-Cryst. Solids, 143, 84–92.CrossRefGoogle Scholar
Pereira, M. M., Clark, A. E. and Hench, L. L. 1995. Effect of texture on the rate of hydroxyapatite formation on gel–silica surface. J. Am. Ceram. Soc., 78, 2463–8.CrossRefGoogle Scholar
Li, P., Nakanishi, K., Kokubo, T. and de Groot, K. 1993. Induction and morphology of hydroxyapatite, precipitated from metastable simulated body fluids on sol–gel prepared silica. Biomaterials, 14, 963–8.CrossRefGoogle ScholarPubMed
Salinas, A., Vallet-Regi, M. and Izquierdo-Barba, I. 2001. Biomimetic apatite deposition on calcium silicate gel glasses. J. Sol–Gel Sci. Technol., 21, 13–25.CrossRefGoogle Scholar
Li, R., Clark, A. and Hench, L. 1991. An investigation of bioactive glass powders by sol–gel processing. J. Appl. Biomater., 2, 231–9.CrossRefGoogle ScholarPubMed
Li, P., Ohtsuki, C., Kokubo, T. et al. 1992. Apatite formation induced by silica gel in a simulated body fluid. J. Am. Ceram. Soc., 75, 2094–7.CrossRefGoogle Scholar
Li, P., Kangasniemi, I., De Groot, K., Kokubo, T. and Yli-Urpo, A. 1994. Apatite crystallization from metastable calcium phosphate solution on sol–gel-prepared silica. J. Non-Cryst. Solids, 168, 281–6.CrossRefGoogle Scholar
Guanabara, P., Rodrigues, A. and Peitl, O. 2004. Bioactivity study of glass-ceramics with various crystalline fractions obtained by controlled crystallization. Mater. Sci. Eng. C, 24, 689–91.CrossRefGoogle Scholar
Klein, C., de Groot, K., Chen, W., Li, Y. and Zhang, X. 1994. Osseous substance formation induced in porous calcium phosphate ceramics in soft tissues. Biomaterials, 15, 31–4.CrossRefGoogle ScholarPubMed
Albrektsson, T. and Johansson, C. 2001. Osteoinduction, osteoconduction and osseointegration. European Spine J., 10, S96–S101.Google ScholarPubMed
Levander, G. 1938. A study of bone regeneration. Surg. Gynecol. Obstet., 67, 705–14.Google Scholar
Urist, M. R. and McLean, F. C. 1952. Osteogenetic potency and new-bone formation by induction in transplants to the anterior chamber of the eye. J. Bone Joint Surgery, 34, 443–75.CrossRefGoogle ScholarPubMed
Young, R. W. 1963. Nucleic acids, protein synthesis and bone. Clin. Orthopaedics Related Res., 26, 147–60.Google Scholar
Urist, M. R. 1965. Bone: formation by autoinduction. Science, 150, 893–9.CrossRefGoogle ScholarPubMed
Urist, M. R., Mikulski, A. and Lietze, A. 1979. Solubilized and insolubilized bone morphogenetic protein. Proc. Nat. Acad. Sci. USA, 76, 1828–32.CrossRefGoogle ScholarPubMed
Dealler, S. 1981. Electrical phenomena associated with bones and fractures and the therapeutic use of electricity in fracture healing. J. Med. Eng. Technol., 5, 73–9.CrossRefGoogle ScholarPubMed
Yasuda, I. 1977. The classic fundamental aspects of fracture treatment. Clin. Orthopaedics Related Res., 124, 5–8.Google Scholar
Ripamonti, U. 1991. The morphogenesis of bone in replicas of porous hydroxyapatite obtained from conversion of calcium carbonate exoskeletons of coral. J. Bone Joint Surgery, 73, 692–703.CrossRefGoogle ScholarPubMed
Heughebaert, M., LeGeros, R., Gineste, M., Guilhem, A. and Bonel, G. 1988. Physicochemical characterization of deposits associated with HA ceramics implanted in nonosseous sites. J. Biomed. Mater. Res., 22, 257–68.CrossRefGoogle ScholarPubMed
Zhang, X., Zou, P. and Wu, C. 1991. A study of porous block HA ceramics and its osteogenesis. In Bioceramics and the Human Body ed. Ravaglioli, A. and Krajewski, A.Amsterdam: Elsevier Applied Science, pp. 408–15.Google Scholar
Yuan, H., van Blitterswijk, C. A., de Groot, K. and de Bruijn, J. D. 2006. Cross-species comparison of ectopic bone formation in biphasic calcium phosphate (BCP) and hydroxyapatite (HA) scaffolds. Tissue Eng., 12, 1607–15.CrossRefGoogle ScholarPubMed
Scott, M. A., Levi, B., Askarinam, A. et al. 2011. Brief review of models of ectopic bone formation. Stem Cells Development, 21, 655–67.CrossRefGoogle Scholar
Yang, Z., Yuan, H., Tong, W. et al. 1996. Osteogenesis in extraskeletally implanted porous calcium phosphate ceramics: variability among different kinds of animals. Biomaterials, 17, 2131–7.CrossRefGoogle ScholarPubMed
Yuan, H., De Bruijn, J., Li, Y. et al. 2001. Bone formation induced by calcium phosphate ceramics in soft tissue of dogs: a comparative study between porous α-TCP and β-TCP. J. Mater. Sci.: Mater. Med., 12, 7–13.Google ScholarPubMed
Yang, Z. J., Yuan, H., Zou, P. et al. 1997. Osteogenic responses to extraskeletally implanted synthetic porous calcium phosphate ceramics: an early stage histomorphological study in dogs. J. Mater. Sci.: Mater. Med., 8, 697–701.Google ScholarPubMed
Ripamonti, U., Van den Heever, B. and Van Wyk, J. 1993. Expression of the osteogenic phenotype in porous hydroxyapatite implanted extraskeletally in baboons. Matrix, 13, 491–502.CrossRefGoogle ScholarPubMed
Habibovic, P., Sees, T. M., van den Doel, M. A., van Blitterswijk, C. A. and de Groot, K. 2006. Osteoinduction by biomaterials – physicochemical and structural influences. J. Biomed. Mater. Res. Part A, 77, 747–62.CrossRefGoogle ScholarPubMed
Habibovic, P. and de Groot, K. 2007. Osteoinductive biomaterials – properties and relevance in bone repair. J. Tissue Eng. Regenerative Med., 1, 25–32.CrossRefGoogle ScholarPubMed
Zhang, X. 2008. Osteoinduction and ostogenic genes expression regulated by Ca-P bioceramics. Biomaterials in Asia. In Commemoration of the 1st Asian Biomaterials Congress, Tsukuba, 2007. Singapore: World Scientific.Google Scholar
Wang, E. A. 1993. Bone morphogenetic proteins (BMPs): therapeutic potential in healing bony defects. Trends Biotechnol., 11, 379–83.CrossRefGoogle ScholarPubMed
Qu, S., Guo, X., Weng, J. et al. 2004. Evaluation of the expression of collagen type I in porous calcium phosphate ceramics implanted in an extra-osseous site. Biomaterials, 25, 659–67.CrossRefGoogle Scholar
Yuan, H., Zou, P., Yang, Z. et al. 1998. Bone morphogenetic protein and ceramic-induced osteogenesis. J. Mater. Sci.: Mater. Med., 9, 717–21.Google ScholarPubMed
Peitl Filho, O. and Latorre, G. P. 1996. Effect of crystallization on apatite-layer formation of bioactive glass. J. Biomed. Mater. Res., 30, 509–14.3.0.CO;2-T>CrossRefGoogle ScholarPubMed
Bellucci, D., Cannillo, V. and Sola, A. 2010. An overview of the effects of thermal processing on bioactive glasses. Sci. Sintering, 42, 307–20.CrossRefGoogle Scholar
Wang, C., Duan, Y., Markovic, B. et al. 2004. Phenotypic expression of bone-related genes in osteoblasts grown on calcium phosphate ceramics with different phase compositions. Biomaterials, 25, 2507–14.CrossRefGoogle ScholarPubMed
Wang, C., Duan, Y., Markovic, B. et al. 2004. Proliferation and bone-related gene expression of osteoblasts grown on hydroxyapatite ceramics sintered at different temperature. Biomaterials, 25, 2949–56.CrossRefGoogle ScholarPubMed
Fan, H. S., Ikoma, T., Bao, C. et al. 2006. Surface characteristics and osteoinductivity of biphasic calcium phosphate ceramics with different sintering temperature. Key Eng. Mater., 309, 1299–302.CrossRefGoogle Scholar
Li, P., Yang, Q., Zhang, F. and Kokubo, T. 1992. The effect of residual glassy phase in a bioactive glass-ceramic on the formation of its surface apatite layer in vitro. J. Mater. Sci.: Mater. Med., 3, 452–6.Google Scholar
Hench, L. L. 1993. An Introduction to Bioceramics. Singapore: World Scientific.CrossRefGoogle Scholar
Habibovic, P., Yuan, H., van der Valk, C. M. et al. 2005. 3D microenvironment as essential element for osteoinduction by biomaterials. Biomaterials, 26, 3565–75.CrossRefGoogle ScholarPubMed
Hollister, S. J. 2005. Porous scaffold design for tissue engineering. Nature Mater., 4, 518–24.CrossRefGoogle ScholarPubMed
Chu, T.-M. G., Orton, D. G., Hollister, S. J., Feinberg, S. E. and Halloran, J. W. 2002. Mechanical and in vivo performance of hydroxyapatite implants with controlled architectures. Biomaterials, 23, 1283–93.CrossRefGoogle ScholarPubMed
Hong, Y., Fan, H., Li, B. et al. 2010. Fabrication, biological effects, and medical applications of calcium phosphate nanoceramics. Mater. Sci. Eng.: R: Reports, 70, 225–42.CrossRefGoogle Scholar
Gu, Y., Loh, N., Khor, K., Tor, S. and Cheang, P. 2002. Spark plasma sintering of hydroxyapatite powders. Biomaterials, 23, 37–43.CrossRefGoogle ScholarPubMed
Xu, J., Khor, K., Gu, Y., Kumar, R. and Cheang, P. 2005. Radio frequency (rf) plasma spheroidized HA powders: powder characterization and spark plasma sintering behavior. Biomaterials, 26, 2197–207.CrossRefGoogle ScholarPubMed
Li, W. and Gao, L. 2003. Fabrication of HAp–ZrO2(3Y) nano-composite by SPS. Biomaterials, 24, 937–40.CrossRefGoogle ScholarPubMed
Rameshbabu, N. and Rao, K. P. 2009. Microwave synthesis, characterization and in-vitro evaluation of nanostructured biphasic calcium phosphates. Current Appl. Phys., 9, S29–S31.CrossRefGoogle Scholar
Menezes, R. and Kiminami, R. 2008. Microwave sintering of alumina–zirconia nanocomposites. J. Mater. Processing Technol., 203, 513–17.CrossRefGoogle Scholar
Jalota, S., Tas, A. C. and Bhaduri, S. B. 2004. Microwave-assisted synthesis of calcium phosphate nanowhiskers. J. Mater. Res., 19, 1876.CrossRefGoogle Scholar
Li, P., Chen, I.-W. and Penner-Hahn, J. E. 1993. X-ray-absorption studies of zirconia polymorphs. II. Effect of Y2O3 dopant on ZrO2 structure. Phys. Rev. B, 48, 10074.CrossRefGoogle ScholarPubMed
Lu, B., Yi, D. Q., Yan, B. et al. 2005. High-pressure sintering and magnetic properties of Fe86Zr11−xNbxB3 (x = 5.5, 6) amorphous alloys. Trans. Nonferrous Metals Soc. China, 15, 828–33.Google Scholar
Fang, Y., Agrawal, D. K., Roy, D. M. and Roy, R. 1994. Microwave sintering of hydroxyapatite ceramics. J. Mater. Res., 9, 180–7.CrossRefGoogle Scholar
Murugan, R. and Ramakrishna, S. 2006. Production of ultra-fine bioresorbable carbonated hydroxyapatite. Acta Biomater., 2, 201–6.CrossRefGoogle ScholarPubMed
Webster, T. J., Ergun, C., Doremus, R. H., Siegel, R. W. and Bizios, R. 2000. Specific proteins mediate enhanced osteoblast adhesion on nanophase ceramics. J. Biomed. Mater. Res., 51, 475–83.3.0.CO;2-9>CrossRefGoogle ScholarPubMed
Lück, M., Paulke, B. R., Schröder, W., Blunk, T. and Müller, R. 1998. Analysis of plasma protein adsorption on polymeric nanoparticles with different surface characteristics. J. Biomed. Mater. Res., 39, 478–85.3.0.CO;2-6>CrossRefGoogle ScholarPubMed
Lopes, M., Monteiro, F., Santos, J., Serro, A. and Saramago, B. 1999. Hydrophobicity, surface tension, and zeta potential measurements of glass-reinforced hydroxyapatite composites. J. Biomed. Mater. Res., 45, 370–5.3.0.CO;2-0>CrossRefGoogle ScholarPubMed
Webster, T. J., Siegel, R. W. and Bizios, R. 1999. Osteoblast adhesion on nanophase ceramics. Biomaterials, 20, 1221–7.CrossRefGoogle ScholarPubMed
Webster, T. J., Schadler, L. S., Siegel, R. W. and Bizios, R. 2001. Mechanisms of enhanced osteoblast adhesion on nanophase alumina involve vitronectin. Tissue Eng., 7, 291–301.CrossRefGoogle ScholarPubMed
Ma, P. X. and Zhang, R. 1999. Synthetic nano-scale fibrous extracellular matrix. J. Biomed. Mater. Res., 46, 60–72.3.0.CO;2-H>CrossRefGoogle ScholarPubMed
Chen, V. J., Smith, L. A. and Ma, P. X. 2006. Bone regeneration on computer-designed nano-fibrous scaffolds. Biomaterials, 27, 3973–9.CrossRefGoogle ScholarPubMed
Rezwan, K., Meier, L. P. and Gauckler, L. J. 2005. Lysozyme and bovine serum albumin adsorption on uncoated silica and AlOOH-coated silica particles: the influence of positively and negatively charged oxide surface coatings. Biomaterials, 26, 4351–7.CrossRefGoogle ScholarPubMed
Abbatiello, S. and Porter, T. 1997. Anion-mediated precipitation of recombinant human bone morphogenetic protein (rhBMP-2) is dependent upon the heparin binding N-terminal region. Protein Sci., 6, 99.Google Scholar
Wan, Y., Wang, Y., Liu, Z. et al. 2005. Adhesion and proliferation of OCT-1 osteoblast-like cells on micro- and nano-scale topography structured poly(l-lactide). Biomaterials, 26, 4453–9.CrossRefGoogle Scholar
Guo, X., Gough, J. E., Xiao, P., Liu, J. and Shen, Z. 2007. Fabrication of nanostructured hydroxyapatite and analysis of human osteoblastic cellular response. J. Biomed. Mater. Res. Part A, 82, 1022–32.CrossRefGoogle ScholarPubMed
Zhao, Y., Zhang, Y., Ning, F., Guo, D. and Xu, Z. 2007. Synthesis and cellular biocompatibility of two kinds of HAP with different nanocrystal morphology. J. Biomed. Mater. Res. Part B: Appl. Biomater., 83, 121–6.CrossRefGoogle ScholarPubMed
Li, B., Chen, X., Guo, B. et al. 2009. Fabrication and cellular biocompatibility of porous carbonated biphasic calcium phosphate ceramics with a nanostructure. Acta Biomater., 5, 134.CrossRefGoogle ScholarPubMed
Hansen, J. C., Yul Lim, J., Xu, L.-C. et al. 2007. Effect of surface nanoscale topography on elastic modulus of individual osteoblastic cells as determined by atomic force microscopy. J. Biomech., 40, 2865–71.CrossRefGoogle ScholarPubMed
Tambasco de Oliveira, P. and Nanci, A. 2004. Nanotexturing of titanium-based surfaces upregulates expression of bone sialoprotein and osteopontin by cultured osteogenic cells. Biomaterials, 25, 403–13.CrossRefGoogle Scholar
Isa, Z. M., Schneider, G. B., Zaharias, R., Seabold, D. and Stanford, C. M. 2006. Effects of fluoride-modified titanium surfaces on osteoblast proliferation and gene expression. Int. J. Oral Maxillofacial Implants, 21, 203.Google ScholarPubMed
Lobel, K. and Hench, L. 1996. In-vitro protein interactions with a bioactive gel-glass. J. Sol–Gel Sci. Technol., 7, 69–76.CrossRefGoogle Scholar
Service, R. 2003. American Chemical Society meeting: nanomaterials show signs of toxicity. Science, 300, 243.CrossRefGoogle ScholarPubMed
Tsuji, J. S., Maynard, A. D., Howard, P. C. et al. 2006. Research strategies for safety evaluation of nanomaterials, part IV: risk assessment of nanoparticles. Toxicol. Sci., 89, 42–50.CrossRefGoogle ScholarPubMed
Card, J. W., Zeldin, D. C., Bonner, J. C. and Nestmann, E. R. 2008. Pulmonary applications and toxicity of engineered nanoparticles. Am. J. Physiol. – Lung Cellular Molec. Physiol., 295, L400–11.CrossRefGoogle ScholarPubMed
Yuan, H., Li, Y., De Bruijn, J., De Groot, K. and Zhang, X. 2000. Tissue responses of calcium phosphate cement: a study in dogs. Biomaterials, 21, 1283–90.CrossRefGoogle ScholarPubMed
Shi, Z., Huang, X., Liu, B. et al. 2010. Biological response of osteosarcoma cells to size-controlled nanostructured hydroxyapatite. J. Biomater. Appl., 25, 19–37.Google ScholarPubMed
Shi, Z., Huang, X., Cai, Y., Tang, R. and Yang, D. 2009. Size effect of hydroxyapatite nanoparticles on proliferation and apoptosis of osteoblast-like cells. Acta Biomater., 5, 338–45.CrossRefGoogle ScholarPubMed
Qing, F., Wang, Z., Hong, Y. et al. 2012. Selective effects of hydroxyapatite nanoparticles on osteosarcoma cells and osteoblasts. J. Mater. Sci.: Mater. Med., 23, 2245–51.Google ScholarPubMed
Aoki, H., Ogaki, M. and Kano, S. 1993. Effects of adriacin-absorbing hydroxyapatite-sol on Ca-9 cell growth. Rep. Inst. Med. Dent. Eng., 27, 39–44.Google Scholar
Cao, X., Li, S., Zhang, R. and Yan, Y. 2003. Effect on the hepatocellular carcinoma cell proliferation and cell cycle treated with hydroxyapatite nanoparticles. Chinese J. Cancer Prevention Treatment, 10, 256–8.Google Scholar
Liu, Z.-S., Tang, S.-L. and Ai, Z.-L. 2003. Effects of hydroxyapatite nanoparticles on proliferation and apoptosis of human hepatoma BEL-7402 cells. World J. Gastroenterol., 9, 1968–71.CrossRefGoogle ScholarPubMed
Chen, X., Deng, C., Tang, S. and Zhang, M. 2007. Mitochondria-dependent apoptosis induced by nanoscale hydroxyapatite in human gastric cancer SGC-7901 cells. Biol. Pharmaceutical Bull., 30, 128–32.CrossRefGoogle ScholarPubMed
Li, B., Guo, B., Fan, H. and Zhang, X. 2008. Preparation of nano-hydroxyapatite particles with different morphology and their response to highly malignant melanoma cells in vitro. Appl. Surf. Sci., 255, 357–60.CrossRefGoogle Scholar
Guo, B., Li, B., Wang, X. L. et al. 2007. Effect of different hydroxyapatite particles on malignant melanoma cell behavior. Key Eng. Mater., 342, 761–4.CrossRefGoogle Scholar
Yuan, Y., Liu, C., Qian, J., Wang, J. and Zhang, Y. 2010. Size-mediated cytotoxicity and apoptosis of hydroxyapatite nanoparticles in human hepatoma HepG2 cells. Biomaterials, 31, 730–40.CrossRefGoogle ScholarPubMed
Motskin, M., Wright, D., Muller, K. et al. 2009. Hydroxyapatite nano and microparticles: correlation of particle properties with cytotoxicity and biostability. Biomaterials, 30, 3307–17.CrossRefGoogle ScholarPubMed
Zhang, P., Zhang, Z., Li, W. and Zhu, M. 2013. Antibacterial TiO2 coating incorporating silver nanoparticles by microarc oxidation and ion implantation. J. Nanomater., 1–8.
Yang, B., Gan, L., Qu, Y. and Yue, C. 2010. Anti-inflammatory properties of bioactive titanium metals. J. Biomed. Mater. Res. Part A, 94, 700–5.Google ScholarPubMed
De Groot, K., Wolke, J. and Jansen, J. 1998. Calcium phosphate coatings for medical implants. Proc. Inst. Mech. Eng., Part H: J. Eng. Med., 212, 137–47.CrossRefGoogle ScholarPubMed
Wang, Y.-Q., Tao, J., Wang, L., He, P.-T. and Wang, T. 2008. HA coating on titanium with nanotubular anodized TiO2 intermediate layer via electrochemical deposition. Trans. Nonferrous Metals Soc. China, 18, 631–5.CrossRefGoogle Scholar
Jonášová, L., Müller, F. A., Helebrant, A., Strnad, J. and Greil, P. 2004. Biomimetic apatite formation on chemically treated titanium. Biomaterials, 25, 1187–94.CrossRefGoogle ScholarPubMed
Cao, Y., Weng, J., Chen, J. et al. 1996. Water vapour-treated hydroxyapatite coatings after plasma spraying and their characteristics. Biomaterials, 17, 419–24.CrossRefGoogle ScholarPubMed
Huang, Y., Qu, Y., Yang, B. et al. 2009. In vivo biological responses of plasma sprayed hydroxyapatite coatings with an electric polarized treatment in alkaline solution. Mater. Sci. Eng. C, 29, 2411–16.CrossRefGoogle Scholar
Ohgushi, H., Tamai, S., Dohi, Y. et al. 1996. In vitro bone formation by rat marrow cell culture. J. Biomed. Mater. Res., 32, 333–40.3.0.CO;2-T>CrossRefGoogle ScholarPubMed
Wang, C., Xue, Y., Lin, K. et al. 2012. The enhancement of bone regeneration by a combination of osteoconductivity and osteostimulation using β-CaSiO3/β-Ca3(PO4)2 composite bioceramics. Acta Biomater., 8, 350–60.CrossRefGoogle ScholarPubMed
Cao, H. and Liu, X. 2013. Plasma-sprayed ceramic coatings for osseointegration. Int. J. Appl. Ceram. Technol., 10, 1–10.CrossRefGoogle Scholar
Xue, W., Liu, X., Zheng, X. and Ding, C. 2004. Plasma-sprayed diopside coatings for biomedical applications. Surf. Coatings Technol., 185, 340–5.CrossRefGoogle Scholar
Li, Z., Qu, Y., Zhang, X. and Yang, B. 2009. Bioactive nano-titania ceramics with biomechanical compatibility prepared by doping with piezoelectric BaTiO3. Acta Biomater., 5, 2189–95.CrossRefGoogle Scholar
Heimann, R. B., Schürmann, N. and Müller, R. T. 2004. In vitro and in vivo performance of Ti6Al4V implants with plasma-sprayed osteoconductive hydroxyapatite–bioinert titania bond coat “duplex” systems: an experimental study in sheep. J. Mater. Sci.: Mater. Med., 15, 1045–52.Google Scholar
Fielding, G. A., Roy, M., Bandyopadhyay, A. and Bose, S. 2012. Antibacterial and biological characteristics of silver containing and strontium doped plasma sprayed hydroxyapatite coatings. Acta Biomater., 8, 3144–52.CrossRefGoogle ScholarPubMed
Lin, D.-Y. and Wang, X.-X. 2010. Electrodeposition of hydroxyapatite coating on CoNiCrMo substrate in dilute solution. Surf. Coatings Technol., 191, 3205–13.CrossRefGoogle Scholar
Farnoush, H., Mohandesi, J. A. and Fatmehsari, D. H. 2013. Effect of particle size on the electrophoretic deposition of hydroxyapatite coatings: a kinetic study based on a statistical analysis. Int. J. Appl. Ceram. Technol., 10, 87–96.CrossRefGoogle Scholar
Yang, B., Uchida, M., Kim, H.-M., Zhang, X. and Kokubo, T. 2004. Preparation of bioactive titanium metal via anodic oxidation treatment. Biomaterials, 25, 1003–10.CrossRefGoogle ScholarPubMed
Das, K., Bandyopadhyay, A. and Bose, S. 2008. Biocompatibility and in situ growth of TiO2 nanotubes on Ti using different electrolyte chemistry. J. Am. Ceram. Soc., 91, 2808–14.CrossRefGoogle Scholar
Ishizawa, H. and Ogino, M. 1995. Characterization of thin hydroxyapatite layers formed on anodic titanium oxide films containing Ca and P by hydrothermal treatment. J. Biomed. Mater. Res., 29, 1071–9.CrossRefGoogle ScholarPubMed
Kim, H., Miyaji, F., Kokubo, T. and Nakamura, T. 1997. Effect of heat treatment on apatite-forming ability of Ti metal induced by alkali treatment. J. Mater. Sci.: Mater. Med., 8, 341–7.Google ScholarPubMed
Zhao, C., Zhu, X., Yuan, T., Fan, H. and Zhang, X. 2010. Fabrication of biomimetic apatite coating on porous titanium and their osteointegration in femurs of dogs. Mater. Sci. Eng. C, 30, 98–104.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×