Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-05-30T23:57:53.826Z Has data issue: false hasContentIssue false

9 - Individual differences in color vision

from Part III - Development of and differences in color vision

Published online by Cambridge University Press:  05 April 2016

Andrew J. Elliot
Affiliation:
University of Rochester, New York
Mark D. Fairchild
Affiliation:
Rochester Institute of Technology, New York
Anna Franklin
Affiliation:
University of Sussex
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramov, I., Gordon, J., Feldman, O., and Chavarga, A. (2012). Sex and vision. II. Color appearance of monochromatic lights. Biology of Sex Differences, 3(1), 21.CrossRefGoogle ScholarPubMed
Banks, M. S., and Bennett, P. J. (1988). Optical and photoreceptor immaturities limit the spatial and chromatic vision of human neonates. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 5(12), 2059–79.CrossRefGoogle ScholarPubMed
Beer, D., Wortman, J., Horwitz, G., and MacLeod, D. (2005). Compensation of white for macular filtering [Abstract]. Journal of Vision, 5(8), 282a.CrossRefGoogle Scholar
Beer, R. D., Dinca, A., and MacLeod, D. I. A. (2006). Ideal white can be yellowish or bluish, but not reddish or greenish. Journal of Vision, 6(6), 417.CrossRefGoogle Scholar
Belmore, S. C., and Shevell, S. K. (2008). Very-long-term chromatic adaptation: test of gain theory and a new method. Visual Neuroscience, 25(3), 411–14.CrossRefGoogle ScholarPubMed
Bimler, D., and Kirkland, J. (2004). Twins and odd-ones-out: a twin study of genetic contributions to variability in personal colour space. Clinical and Experimental Optometry, 87(4–5), 313–21.Google ScholarPubMed
Bimler, D., and Kirkland, J. (2009). Colour-space distortion in women who are heterozygous for colour deficiency. Vision Research, 49(5), 536–43.CrossRefGoogle ScholarPubMed
Bimler, D. L., Kirkland, J., and Jameson, K. A. (2004). Quantifying variations in personal color spaces: are there sex differences in color vision? Color Research & Application, 29(2), 128–34.CrossRefGoogle Scholar
Bompas, A., Powell, G., and Sumner, P. (2013). Systematic biases in adult color perception persist despite lifelong information sufficient to calibrate them. Journal of Vision, 13(1).CrossRefGoogle Scholar
Bosten, J. M., Bargary, G., Goodbourn, P. T., Hogg, R. E., Lawrance-Owen, A. J., and Mollon, J. D. (2014). Individual differences provide psychophysical evidence for separate on- and off-pathways deriving from short-wave cones. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 31(4), A4754.CrossRefGoogle ScholarPubMed
Bosten, J. M., and Lawrance-Owen, A. J. (2014). No difference in variability of unique hue selections and binary hue selections. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 31, A357–64.CrossRefGoogle ScholarPubMed
Boynton, R. M., and Kaiser, P. K. (1968). Vision: the additivity law made to work for heterochromatic photometry with bipartite fields. Science, 161(839), 366–8.CrossRefGoogle ScholarPubMed
Brainard, D. H., Roorda, A., Yamauchi, Y., Calderone, J. B., Metha, A., Neitz, M., and Jacobs, G. H. (2000). Functional consequences of the relative numbers of L and M cones. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 17(3), 607–14.Google ScholarPubMed
Brainard, D. H., and Wandell, B. A. (1992). Asymmetric color matching: how color appearance depends on the illuminant. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 9(9), 1433–48.CrossRefGoogle ScholarPubMed
Brown, A. M., and Lindsey, D. T. (2004). Color and language: worldwide distribution of Daltonism and distinct words for “blue”. Visual Neuroscience, 21(3), 409–12.CrossRefGoogle ScholarPubMed
Cavanagh, P., MacLeod, D. I., and Anstis, S. M. (1987). Equiluminance: spatial and temporal factors and the contribution of blue-sensitive cones. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 4(8), 1428–38.CrossRefGoogle ScholarPubMed
Chauhan, T., Perales, E., Xiao, K., Hird, E., Karatzas, D., and Wuerger, S. (2014). The achromatic locus: effect of navigation direction in color space. Journal of Vision, 14 :1:25, 111.CrossRefGoogle ScholarPubMed
Cicerone, C. M. (1987). Constraints placed on color vision models by the relative numbers of different cone classes in human fovea centralis. Farbe, 34, 5966.Google Scholar
Davies, N. P., and Morland, A. B. (2004). Macular pigments: their characteristics and putative role. Progress in Retinal and Eye Research, 23(5), 533–59.CrossRefGoogle ScholarPubMed
Delahunt, P. B., Webster, M. A., Ma, L., and Werner, J. S. (2004). Long-term renormalization of chromatic mechanisms following cataract surgery. Visual Neuroscience, 21(3), 301–7.CrossRefGoogle ScholarPubMed
Derrington, A. M., Krauskopf, J., and Lennie, P. (1984). Chromatic mechanisms in lateral geniculate nucleus of macaque. Journal of Physiology, 357, 241–65.CrossRefGoogle ScholarPubMed
De Valois, R. L., and De Valois, K. K. (1993). A multi-stage color model. Vision Research, 33(8), 1053–65.CrossRefGoogle ScholarPubMed
de Vries, H. (1949). The heredity of the relative numbers of the red and green receptors in the human eye. Genetica, 24, 199212.CrossRefGoogle Scholar
Dobkins, K. R., Gunther, K. L., and Peterzell, D. H. (2000). What covariance mechanisms underlie green/red equiluminance, luminance contrast sensitivity and chromatic (green/red) contrast sensitivity? Vision Research, 40(6), 613–28.CrossRefGoogle ScholarPubMed
Elliott, S. L., Werner, J. S., and Webster, M. A. (2012). Individual and age-related variation in chromatic contrast adaptation. Journal of Vision, 12(8), 11.CrossRefGoogle ScholarPubMed
Granzier, J. J. M., and Valsecchi, M. (2014). Variations in daylight as a contextual cue for estimating season, time of day, and weather conditions. Journal of Vision, 14 .1:22, 123.CrossRefGoogle ScholarPubMed
Gunther, K. L., and Dobkins, K. R. (2002). Individual differences in chromatic (red/green) contrast sensitivity are constrained by the relative number of L- versus M-cones in the eye. Vision Research, 42(11), 1367–78.CrossRefGoogle ScholarPubMed
Gunther, K. L., and Dobkins, K. R. (2003). Independence of mechanisms tuned along cardinal and non-cardinal axes of color space: evidence from factor analysis. Vision Research, 43(6), 683–96.CrossRefGoogle ScholarPubMed
Hammond, B. R. Jr., Wooten, B. R., and Snodderly, D. M. (1997). Individual variations in the spatial profile of human macular pigment. Journal of the Optical Society of America. A, Optics, Image Science, and Vision,, 14(6), 1187–96.CrossRefGoogle ScholarPubMed
Hansen, T., Olkkonen, M., Walter, S., and Gegenfurtner, K. R. (2006). Memory modulates color appearance. Nature Neuroscience, 9(11), 1367–8.CrossRefGoogle ScholarPubMed
Hardy, J. L., Frederick, C. M., Kay, P., and Werner, J. S. (2005). Color naming, lens aging, and grue: what the optics of the aging eye can teach us about color language. Psychological Science, 16(4), 321–7.CrossRefGoogle ScholarPubMed
Hinks, D., Cardenas, L. M., Kuehni, R. G., and Shamey, R. (2007). Unique-hue stimulus selection using Munsell color chips. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 24(10), 3371–8.CrossRefGoogle ScholarPubMed
Hofer, H., Carroll, J., Neitz, J., Neitz, M., and Williams, D. R. (2005). Organization of the human trichromatic cone mosaic. Journal of Neuroscience, 25(42), 9669–79.CrossRefGoogle ScholarPubMed
Jameson, K. A., Highnote, S. M., and Wasserman, L. M. (2001). Richer color experience in observers with multiple photopigment opsin genes. Psychonomic Bulletin & Review, 8(2), 244–61.CrossRefGoogle ScholarPubMed
Jordan, G., Deeb, S. S., Bosten, J. M., and Mollon, J. D. (2010). The dimensionality of color vision in carriers of anomalous trichromacy. Journal of Vision, 10(8), 12.CrossRefGoogle ScholarPubMed
Jordan, G., and Mollon, J. D. (1993). A study of women heterozygous for colour deficiencies. Vision Research, 33(11), 14951508.CrossRefGoogle ScholarPubMed
Jordan, G., and Mollon, J. D. (1995). Rayleigh matches and unique green. Vision Research, 35(5), 613–20.CrossRefGoogle ScholarPubMed
Juricevic, I., and Webster, M. A. (2009). Variations in normal color vision. V. Simulations of adaptation to natural color environments. Visual Neuroscience, 26(1), 133–45.CrossRefGoogle ScholarPubMed
Kaiser, P. K. (1988). Sensation luminance: a new name to distinguish CIE luminance from luminance dependent on an individual’s spectral sensitivity. Vision Research, 28(3), 455–6.CrossRefGoogle Scholar
Kay, P., Berlin, B., Maffi, L., Merrifield, W. R., and Cook, R. (2009). The World Color Survey. Stanford, CA: CSLI.Google Scholar
Komarova, N. L., and Jameson, K. A. (2008). Population heterogeneity and color stimulus heterogeneity in agent-based color categorization. Journal of Theoretical Biology, 253(4), 680700.CrossRefGoogle ScholarPubMed
Kuehni, R. G. (2001). Determination of unique hues using Munsell color chips. Color Research & Application, 26, 61–6.3.0.CO;2-P>CrossRefGoogle Scholar
Kuehni, R. G. (2004). Variability in unique hue selection: a surprising phenomenon. Color Research & Application, 29, 158–62.Google Scholar
Lennie, P., Pokorny, J., and Smith, V. C. (1993). Luminance. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 10(6), 1283–93.CrossRefGoogle ScholarPubMed
Lindsey, D. T., and Brown, A. M. (2002). Color naming and the phototoxic effects of sunlight on the eye. Psychological Science, 13(6), 506–12.CrossRefGoogle ScholarPubMed
Lindsey, D. T., and Brown, A. M. (2009). World Color Survey color naming reveals universal motifs and their within-language diversity. Proceedings of the National Academy of Sciences of the United States of America, 106(47), 19785–90.Google ScholarPubMed
Lindsey, D. T., and Teller, D. Y. (1990). Motion at isoluminance: discrimination/detection ratios for moving isoluminant gratings. Vision Research, 30(11), 1751–61.CrossRefGoogle ScholarPubMed
Livingstone, M., and Hubel, D. (1988). Segregation of form, color, movement, and depth: anatomy, physiology, and perception. Science, 240(4853), 740–9.CrossRefGoogle ScholarPubMed
MacLeod, D. I., and Boynton, R. M. (1979). Chromaticity diagram showing cone excitation by stimuli of equal luminance. Journal of the Optical Society of America, 69(8), 1183–6.CrossRefGoogle ScholarPubMed
MacLeod, D. I., and Webster, M. A. (1988). Direct psychophysical estimates of the cone-pigment absorption spectra. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 5(10), 1736–43.CrossRefGoogle ScholarPubMed
Malkoc, G., Kay, P., and Webster, M. A. (2005). Variations in normal color vision. IV. Binary hues and hue scaling. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 22(10), 2154–68.CrossRefGoogle ScholarPubMed
Miyahara, E. (2003). Focal colors and unique hues. Perceptual and Motor Skills, 97(3 Pt 2), 1038–42.CrossRefGoogle ScholarPubMed
Miyahara, E., Pokorny, J., Smith, V. C., Baron, R., and Baron, E. (1998). Color vision in two observers with highly biased LWS/MWS cone ratios. Vision Research, 38(4), 601–12.CrossRefGoogle ScholarPubMed
Miyahara, E., Szewczyk, E., and McMartin, J. (2004). Individual differences in unique hue loci and their relation to color preferences. Color Research & Application, 29, 285–91.CrossRefGoogle Scholar
Mizokami, Y., Werner, J. S., Crognale, M. A., and Webster, M. A. (2006). Nonlinearities in color coding: compensating color appearance for the eye’s spectral sensitivity. Journal of Vision, 6(9), 9961007.CrossRefGoogle ScholarPubMed
Mollon, J. D. (1992). Worlds of difference. Nature, 356, 378–9.CrossRefGoogle ScholarPubMed
Mollon, J. D. (2006). Monge (the Verriest Lecture). Visual Neuroscience, 23, 297309.CrossRefGoogle ScholarPubMed
Mollon, J. D. (2009). A neural basis for unique hues? Current Biology, 19(11), R441–2; author reply R442–3.CrossRefGoogle ScholarPubMed
Mollon, J. D., Bowmaker, J. K., and Jacobs, G. H. (1984). Variations of colour vision in a New World primate can be explained by polymorphism of retinal photopigments. Proceedings of the Royal Society of London. Series B, Biological Sciences, 222(1228), 373–99.Google Scholar
Mollon, J. D., and Jordan, G. (1997). On the nature of unique hues. In Dickenson, C., Murray, I., and Carden, D. (eds.), John Dalton’s Colour Vision Legacy (pp. 381–97). London: Taylor and Francis.Google Scholar
Mullen, K. T. (1985). The contrast sensitivity of human colour vision to red-green and blue-yellow chromatic gratings. Journal of Physiology, 359, 381400.CrossRefGoogle ScholarPubMed
Murray, I. J., Parry, N. R., McKeefry, D. J., and Panorgias, A. (2012). Sex-related differences in peripheral human color vision: a color matching study. Journal of Vision, 12(1).CrossRefGoogle ScholarPubMed
Nagy, A. L., MacLeod, D. I., Heyneman, N. E., and Eisner, A. (1981). Four cone pigments in women heterozygous for color deficiency. Journal of the Optical Society of America, 71(6), 719–22.CrossRefGoogle ScholarPubMed
Neitz, J., Carroll, J., Yamauchi, Y., Neitz, M., and Williams, D. R. (2002). Color perception is mediated by a plastic neural mechanism that is adjustable in adults. Neuron, 35(4), 783–92.CrossRefGoogle ScholarPubMed
Neitz, J., and Neitz, M. (2011). The genetics of normal and defective color vision. Vision Research, 51(7), 633–51.CrossRefGoogle ScholarPubMed
Neitz, J., Neitz, M., He, J. C., and Shevell, S. K. (1999). Trichromatic color vision with only two spectrally distinct photopigments. Nature Neuroscience, 2(10), 884–8.CrossRefGoogle ScholarPubMed
O’Neil, S. F., and Webster, M. A. (2014). Filling in, filling out, or filtering out: processes stabilizing color appearance near the center of gaze. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 31(4), A140–7.CrossRefGoogle ScholarPubMed
Owsley, C. (2011). Aging and vision. Vision Research, 51(13), 1610–22.CrossRefGoogle ScholarPubMed
Panorgias, A., Kulikowski, J. J., Parry, N. R., McKeefry, D. J., and Murray, I. J. (2012). Phases of daylight and the stability of color perception in the near peripheral human retina. Journal of Vision, 12(3).CrossRefGoogle ScholarPubMed
Paramei, G. V., Bimler, D. L., and Mislavskaia, N. O. (2004). Colour perception in twins: individual variation beyond common genetic inheritance. Clinical and Experimental Optometry, 87(4–5), 305–12.CrossRefGoogle ScholarPubMed
Peterzell, D. H., and Teller, D. Y. (2000). Spatial frequency tuned covariance channels for red-green and luminance-modulated gratings: psychophysical data from human adults. Vision Research, 40(4), 417–30.Google ScholarPubMed
Pokorny, J., and Smith, V. C. (1977). Evaluation of single-pigment shift model of anomalous trichromacy. Journal of the Optical Society of America, 67(9), 11961209.CrossRefGoogle ScholarPubMed
Pokorny, J., and Smith, V. C. (1987). L/M cone ratios and the null point of the perceptual red/green opponent system. Farbe, 34, 53–7.Google Scholar
Pokorny, J., Smith, V. C., and Lutze, M. (1987). Aging of the human lens. Applied Optics, 26, 1437–40.CrossRefGoogle ScholarPubMed
Richards, W. (1967). Differences among color normals: classes I and II. Journal of the Optical Society of America, 57(8), 1047–55.CrossRefGoogle ScholarPubMed
Roorda, A., and Williams, D. R. (1999). The arrangement of the three cone classes in the living human eye. Nature, 397(6719), 520–2.CrossRefGoogle ScholarPubMed
Schefrin, B. E., and Werner, J. S. (1990). Loci of spectral unique hues throughout the life span. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 7(2), 305–11.CrossRefGoogle ScholarPubMed
Schmidt, B. P., Neitz, M., and Neitz, J. (2014). Neurobiological hypothesis of color appearance and hue perception. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 31, A195–207.CrossRefGoogle ScholarPubMed
Schmolesky, M. T., Wang, Y., Pu, M., and Leventhal, A. G. (2000). Degradation of stimulus selectivity of visual cortical cells in senescent rhesus monkeys. Nature Neuroscience, 3(4), 384–90.CrossRefGoogle ScholarPubMed
Shepard, R. N. (1962). The analysis of proximities: multidimensional scaling with an unknown distance function. II. Psychometrika, 27, 219–46.Google Scholar
Smithson, H. E., Sumner, P., and Mollon, J. D. (2003). How to find a tritan line. In Mollon, J. D., Pokorny, J., and Knoblauch, K.(ed.), Normal and Defective Colour Vision (pp. 279–87). Oxford University Press.Google Scholar
Snodderly, D. M., Auran, J. D., and Delori, F. C. (1984). The macular pigment. II. Spatial distribution in primate retinas. Investigative Ophthalmology and Vision Science, 25(6), 674–85.Google ScholarPubMed
Stoughton, C. M., and Conway, B. R. (2008). Neural basis for unique hues. Current Biology, 18(16), R698–9.CrossRefGoogle ScholarPubMed
Switkes, E. (2008). Contrast salience across three-dimensional chromoluminance space. Vision Research, 48(17), 1812–19.CrossRefGoogle ScholarPubMed
Switkes, E., Bradley, A., and De Valois, K. K. (1988). Contrast dependence and mechanisms of masking interactions among chromatic and luminance gratings. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 5(7), 1149–62.CrossRefGoogle ScholarPubMed
Tansley, B. W., and Boynton, R. M. (1976). A line, not a space, represents visual distinctness of borders formed by different colors. Science, 191(4230), 954–7.CrossRefGoogle Scholar
van Norren, D., and Vos, J. J. (1974). Spectral transmission of the human ocular media. Vision Research, 14, 1237–44.Google Scholar
Volbrecht, V. J., Nerger, J. L., and Harlow, C. E. (1997). The bimodality of unique green revisited. Vision Research, 37(4), 407–16.CrossRefGoogle ScholarPubMed
Webster, M. A. (1992). Reanalysis of lambda max variations in the Stiles–Burch 10 degrees color-matching functions. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 9(8), 1419–21.CrossRefGoogle ScholarPubMed
Webster, M. A. (1996). Human colour perception and its adaptation. Network: Computation in Neural Systems, 7, 587634.CrossRefGoogle Scholar
Webster, M. A. (2011). Adaptation and visual coding. Journal of Vision, 11(5), 123.CrossRefGoogle ScholarPubMed
Webster, M. A., Halen, K., Meyers, A. J., Winkler, P., and Werner, J. S. (2010). Colour appearance and compensation in the near periphery. Proceedings of the Royal Society of London. Series B, Biological Sciences, 277(1689), 1817–25.Google ScholarPubMed
Webster, M. A., Juricevic, I., and McDermott, K. C. (2010). Simulations of adaptation and color appearance in observers with varying spectral sensitivity. Ophthalmic and Physiological Optics, 30(5), 602–10.CrossRefGoogle ScholarPubMed
Webster, M. A., and Kay, P. (2007). Individual and population differences in focal colors. In MacLaury, R. E., Paramei, G. V., and Dedrick, D. (eds.), Anthropology of Color (pp. 2953). Amsterdam: John Benjamins.CrossRefGoogle Scholar
Webster, M. A., and Leonard, D. (2008). Adaptation and perceptual norms in color vision. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 25(11), 2817–25.CrossRefGoogle ScholarPubMed
Webster, M. A., and MacLeod, D. I. (1988). Factors underlying individual differences in the color matches of normal observers. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 5(10), 1722–35.CrossRefGoogle ScholarPubMed
Webster, M. A., Miyahara, E., Malkoc, G., and Raker, V. E. (2000a). Variations in normal color vision. I. Cone-opponent axes. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 17(9), 1535–44.Google ScholarPubMed
Webster, M. A., Miyahara, E., Malkoc, G., and Raker, V. E. (2000b). Variations in normal color vision. II. Unique hues. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 17(9), 1545–55.Google ScholarPubMed
Webster, M. A., Mizokami, Y., and Webster, S. M. (2007). Seasonal variations in the color statistics of natural images. Network, 18(3), 213–33.Google ScholarPubMed
Webster, M. A., and Mollon, J. D. (1994). The influence of contrast adaptation on color appearance. Vision Research, 34(15), 19932020.CrossRefGoogle ScholarPubMed
Webster, M. A. (1997). Adaptation and the color statistics of natural images. Vision Research, 37(23), 3283–98.CrossRefGoogle ScholarPubMed
Webster, M. A., Webster, S. M., Bharadwaj, S., Verma, R., Jaikumar, J., Madan, G., and Vaithilingham, E. (2002). Variations in normal color vision. III. Unique hues in Indian and United States observers. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 19(10), 1951–62.CrossRefGoogle ScholarPubMed
Webster, M. A., Werner, J. S., and Field, D. J. (2005). Adaptation and the phenomenology of perception. In Clifford, C. and Rhodes, G. (eds.), Fitting the Mind to the World: Adaptation and Aftereffects in High-Level Vision. Advances in Visual Cognition Series, vol. II (pp. 241–77). Oxford University Press.Google Scholar
Webster, M. A., Yasuda, M., Haber, S., Ballardini, N., and Leonard, D. (2007). Adaptation and perceptual norms. In Rogowitz, B. E. and Pappas, T. N. (eds.), Human Vision and Electronic Imaging, Proceedings of SPIE, 6492, pp 111).CrossRefGoogle Scholar
Welbourne, L. E., Thompson, P. G., Wade, A. R., and Morland, A. B. (2013). The distribution of unique green wavelengths and its relationship to macular pigment density. Journal of Vision, 13(8).CrossRefGoogle ScholarPubMed
Werner, J. S. (1996). Visual problems of the retina during ageing: compensation mechanisms and colour constancy across the life span. Progress in Retinal and Eye Research, 15(2), 621–45.CrossRefGoogle Scholar
Werner, J. S., Peterzell, D. H., and Scheetz, A. J. (1990). Light, vision, and aging. Optometry and Visual Science, 67(3), 214–29.CrossRefGoogle ScholarPubMed
Werner, J. S., and Schefrin, B. E. (1993). Loci of achromatic points throughout the life span. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 10(7), 1509–16.CrossRefGoogle ScholarPubMed
Wilmer, J. B. (2008). How to use individual differences to isolate functional organization, biology, and utility of visual functions; with illustrative proposals for stereopsis. Spatial Vision, 21(6), 561–79.CrossRefGoogle ScholarPubMed
Wilmer, J. B., Germine, L., Chabris, C. F., Chatterjee, G., Williams, M., Loken, E., and Duchaine, B. (2010). Human face recognition ability is specific and highly heritable. Proceedings of the National Academy of Sciences of the United States of America, 107(11), 5238–41.Google ScholarPubMed
Winderickx, J., Lindsey, D. T., Sanocki, E., Teller, D. Y., Motulsky, A. G., and Deeb, S. S. (1992). Polymorphism in red photopigment underlies variation in colour matching. Nature, 356(6368), 431–3.CrossRefGoogle ScholarPubMed
Wooten, B. R., and Hammond, B. R. Jr. (2005). Spectral absorbance and spatial distribution of macular pigment using heterochromatic flicker photometry. Optometry and Visual Science, 82(5), 378–86.CrossRefGoogle ScholarPubMed
Wuerger, S., Xiao, K., Fu, C., and Karatzas, D. (2010). Colour-opponent mechanisms are not affected by age-related chromatic sensitivity changes. Ophthalmic and Physiological Optics, 30(5), 653–9.CrossRefGoogle Scholar
Wuerger, S. M. (2013). Colour constancy across the life span: evidence for compensatory mechanisms. PLoS ONE, 8(5), e63921.CrossRefGoogle ScholarPubMed
Wuerger, S. M., Atkinson, P., and Cropper, S. (2005). The cone inputs to the unique-hue mechanisms. Vision Research, 45(25–6), 3210–23.CrossRefGoogle Scholar
Wyszecki, G., and Stiles, W. S. (1980). High-level trichromatic color matching and the pigment-bleaching hypothesis. Vision Research, 20(1), 2337.CrossRefGoogle ScholarPubMed
Wyszecki, G., and Stiles, W. S. (1982). Color Science, 2nd edn. New York: Wiley.Google Scholar
Yendrikhovskij, S. N. (2001). Computing color categories from the statistics of natural images. Journal of Imaging Science and Technology, 45, 409–17.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×