Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-06-01T13:19:01.061Z Has data issue: false hasContentIssue false

Amphibian community structure as a function of forest type in Amazonian Peru

Published online by Cambridge University Press:  30 July 2010

Rudolf von May*
Affiliation:
Department of Biological Sciences, Florida International University, 11200 SW 8th Street, OE-167, Miami, Florida, USA
Jennifer M. Jacobs
Affiliation:
Department of Integrative Biology, University of California, Berkeley, California, USA
Roy Santa-Cruz
Affiliation:
Museo de Historia Natural, Universidad Nacional de San Agustín de Arequipa, Arequipa, Perú Facultad de Ciencias Biológicas y Agropecuarias, Universidad Nacional de San Agustín de Arequipa, Arequipa, Perú
Jorge Valdivia
Affiliation:
Facultad de Ciencias Biológicas y Agropecuarias, Universidad Nacional de San Agustín de Arequipa, Arequipa, Perú
Jusmell M. Huamán
Affiliation:
Facultad de Ingeniería Forestal, Universidad Nacional Amazónica de Madre de Dios, Puerto Maldonado, Madre de Dios, Perú
Maureen A. Donnelly
Affiliation:
Department of Biological Sciences, Florida International University, 11200 SW 8th Street, OE-167, Miami, Florida, USA
*
1Corresponding author. Email: rvonmay@gmail.com

Abstract:

The potential effect of forest type on the structuring of animal communities in western Amazonia remains poorly understood. In this study, we tested the hypothesis that amphibian species richness, composition and abundance differ across forest types in the lowland rain forest of south-eastern Peru. By using 320 individual transects, we compared the amphibian assemblages across four major forest types (floodplain, terra firme, bamboo and palm swamp) at each of four sites separated by 3.5–105 km. We identified 1967 individuals of 65 species in 11 families and found that a large proportion of the amphibian diversity in this region is attributed to habitat-related beta diversity. Overall, we found that forest type is more important than site in predicting both species composition and abundance. We also found that, when analyses are conducted separately for each forest type and include species abundance data, similarity between assemblages decreases with increasing geographic distance. In contrast to studies that considered species presence/absence but ignored species abundances, our results highlight the importance of including abundance data in the assessment of animal diversity patterns in western Amazonia. We conclude that evaluating community structure across forest types can improve our understanding of diversity patterns in this region.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

AICHINGER, M. 1987. Annual activity patterns of anurans in a seasonal Neotropical environment. Oecologia 71:583592.CrossRefGoogle Scholar
ALLMON, W. D. 1991. A plot study of forest floor litter frogs, central Amazon, Brazil. Journal of Tropical Ecology 7:503522.CrossRefGoogle Scholar
AZEVEDO-RAMOS, C. & GALATTI, U. 2002. Patterns of amphibian diversity in Brazilian Amazonia: conservation implications. Biological Conservation 103;103111.CrossRefGoogle Scholar
BLAIR, C. & DOAN, T. M. 2009. Patterns of community structure and microhabitat usage in Peruvian Pristimantis (Anura: Strabomantidae). Copeia 2009:303312.CrossRefGoogle Scholar
CLARKE, K. R. & WARWICK, R. M. 1994. Change in marine communities: an approach to statistical analysis and interpretation. Plymouth Marine Laboratory, Plymouth. 144 pp.Google Scholar
CRUMP, M. L. 1971. Quantitative analysis of the ecological distribution of a tropical herpetofauna. Occasional Papers of the Museum of Natural History, The University of Kansas 3:162.Google Scholar
CRUMP, M. L. & SCOTT, N. J. 1994. Visual encounter surveys. Pp. 8492 in Heyer, W. R., Donnelly, M. A., McDiarmid, R. W., Hayek, L. C. & Foster, M. S. (eds.). Measuring and monitoring biological diversity, standard methods for amphibians. Smithsonian Institution Press, Washington, DC.Google Scholar
DAHL, C., NOVOTNY, V., MORAVEC, J. & RICHARDS, S. P. 2009. Beta diversity of frogs in the forests of New Guinea, Amazonia and Europe: contrasting tropical and temperate communities. Journal of Biogeography 36:896904.CrossRefGoogle Scholar
DOAN, T. M. 2003. Which methods are most effective for surveying rain forest herpetofauna? Journal of Herpetology 37:7281.CrossRefGoogle Scholar
DOAN, T. M. & ARIZÁBAL, W. 2002. Microgeographic variation in species composition of the herpetofaunal communities of Tambopata region, Peru. Biotropica 34:101117.CrossRefGoogle Scholar
DUELLMAN, W. E. & THOMAS, R. 1996. Anuran amphibians from a seasonally dry forest in southeastern Peru and comparisons of the anurans among sites in the upper Amazon basin. Occasional Papers of the Museum of Natural History, The University of Kansas 180:134.Google Scholar
DUFRENE, M. & LEGENDRE, P. 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monographs 67:345366.Google Scholar
ERNST, R. & RÖDEL, M.-O. 2005. Anthropogenically induced changes of predictability in tropical anuran assemblages. Ecology 86:31113118.CrossRefGoogle Scholar
ERNST, R. & RÖDEL, M.-O. 2006. Community assembly and structure of tropical leaf-litter anurans. Ecotropica 12:113129.Google Scholar
ERNST, R. & RÖDEL, M.-O. 2008. Patterns of community composition in two tropical tree frog assemblages: separating spatial structure and environmental effects in disturbed and undisturbed forests. Journal of Tropical Ecology 24:111120.CrossRefGoogle Scholar
GARDNER, T. A., RIBEIRO-JUNIOR, M. A., BARLOW, J., ÁVILA-PIRES, T. C. S., HOOGMOED, M. S. & PERES, C. A. 2007a. The value of primary, secondary, and plantation forests for a Neotropical Herpetofauna. Conservation Biology 21:775787.CrossRefGoogle ScholarPubMed
GARDNER, T. A., FITZHERBERT, E. B., DREWES, R. C., HOWELL, K. M. & CARO, T. 2007b. Spatial and temporal patterns of abundance and diversity of an East African leaf litter amphibian fauna. Biotropica 39:105113.CrossRefGoogle Scholar
GOTELLI, N. J. & COLWELL, R. K. 2001. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecology Letters 4:379391.CrossRefGoogle Scholar
GRISCOM, B. W. & ASHTON, M. S. 2006. A self-perpetuating bamboo disturbance cycle in a neotropical forest. Journal of Tropical Ecology 22:587597.CrossRefGoogle Scholar
GRISCOM, B. W., DALY, D. C. & ASHTON, M. S. 2007. Floristics of bamboo-dominated stands in lowland terra-firma forests of southwestern Amazonia. Journal of the Torrey Botanical Society 134:108125.CrossRefGoogle Scholar
HAMILTON, S. K., KELLNDORFER, J., LEHNER, B. & TOBLER, M. 2007. Remote sensing of floodplain geomorphology as a surrogate for biodiversity in a tropical river system (Madre de Dios, Peru). Geomorphology 89:2338.CrossRefGoogle Scholar
HEYER, W. R., DONNELLY, M. A., MCDIARMID, R. W., HAYEK, L. C. & FOSTER, M. S. (eds.). 1994. Measuring and monitoring biological diversity, standard methods for amphibians. Smithsonian Institution Press, Washington, DC. 388 pp.Google Scholar
HOUSEHOLDER, J. E. 2007. Diversity, natural history, and conservation of vanilla of Madre de Dios, Peru. Master's thesis, Texas Christian University, Fort Worth, Texas, USA.Google Scholar
KAHN, F. 1991. Palms as key swamp forest resources in Amazonia. Forest Ecology and Management 38:133142.CrossRefGoogle Scholar
KELLER, A., RÖDEL, M.-O., LINSENMAIR, K. E. & GRAFE, T. U. 2009. The importance of environmental heterogeneity for species diversity and assemblage structure in Bornean stream frogs. Journal of Animal Ecology 78:305314.CrossRefGoogle ScholarPubMed
KRATTER, A. W. 1997. Bamboo specialization by Amazonian birds. Biotropica 29:100110.CrossRefGoogle Scholar
LANDE, R. 1996. Statistics and partitioning of species diversity, and similarity among multiple communities. Oikos 76:513.CrossRefGoogle Scholar
LARSEN, T. H., LOPERA, A. & FORSYTH, A. 2006. Extreme trophic and habitat specialization by Peruvian dung beetles (Coleoptera: Scarabaeidae: Scarabaeinae). The Coleopterists’ Bulletin 60:315324.CrossRefGoogle Scholar
LEIBOLD, M. A., HOLYOAK, M., MOUQUET, N., AMARASEKARE, P., CHASE, J. M., HOOPES, M. F., HOLT, R. D., SHURIN, J. B., LAW, R., TILMAN, D., LOREAU, M. & GONZALEZ, A. 2004. The metacommunity concept: a framework for multi-scale community ecology. Ecology Letters 7:601613.CrossRefGoogle Scholar
LIEBERMAN, S. S. 1986. Ecology of the leaf litter herpetofauna of a Neotropical rain forest: La Selva, Costa Rica. Acta Zoológica Mexicana 15:172.Google Scholar
MENIN, M., LIMA, A. P., MAGNUSSON, W. E. & WALDEZ, F. 2007. Topographic and edaphic effects on the distribution of terrestrially reproducing anurans in Central Amazonia: mesoscale spatial patterns. Journal of Tropical Ecology 23:539547.CrossRefGoogle Scholar
MOSTACEDO, B., BALCAZAR, J. & MONTERO, C. 2006. Tipos de bosque, diversidad y composición florística en la Amazonia sudoeste de Bolivia. Ecología en Bolivia 41:99116.Google Scholar
OLIVIER, J. 2007. Etude spatio-temporelle de la distribution de bambous dans le sud-ouest Amazonien (sud Pérou): histoire, dynamique et futur d'une végétation monodominante en forêt tropicale humide. Ph.D. thesis, Université Toulouse III – Paul Sabatier, Toulouse, France.Google Scholar
PARRIS, K. M. 2004. Environmental and spatial variables influence the composition of frog assemblages in sub-tropical eastern Australia. Ecography 27:392400.CrossRefGoogle Scholar
PEARMAN, P. B. 1997. Correlates of amphibian diversity in an altered landscape of Amazonian Ecuador. Conservation Biology 11:12111225.CrossRefGoogle Scholar
PEARMAN, P. B., VELASCO, A. M. & LÓPEZ, A. 1995. Tropical amphibian monitoring: a comparison of methods for detecting inter-site variation in species’ composition. Herpetologica 51:325337.Google Scholar
PEARSON, D. L. & DERR, J. A. 1986. Seasonal patterns of lowland forest floor arthropod abundance in southeastern Peru. Biotropica 18:244256.CrossRefGoogle Scholar
PERES, C. A. 1997. Primate community structure at twenty western Amazonian flooded and unflooded forests. Journal of Tropical Ecology 13:381405.CrossRefGoogle Scholar
PHILLIPS, O. 1993. Comparative valuation of tropical forests in Amazonian Peru. Ph.D. dissertation. Washington University, St. Louis, Missouri.Google Scholar
PHILLIPS, O., GENTRY, A. H., REYNEL, C., WILKIN, P. & GALVEZ-DURAND, C. 1994. Quantitative ethnobotany and Amazonian conservation. Conservation Biology 8:225248.CrossRefGoogle Scholar
PINEDA, E. & HALFFTER, G. 2004. Species diversity and habitat fragmentation: frogs in a tropical montane landscape in Mexico. Biological Conservation 117:499508.CrossRefGoogle Scholar
PITMAN, N. C. A., TERBORGH, J., SILMAN, M. R. & NUÑEZ, P. 1999. Tree species distributions in an upper Amazonian forest. Ecology 80:26512661.CrossRefGoogle Scholar
RODRÍGUEZ, L. O. 1992. Structure et organization du peuplement d'anoures de Cocha Cashu, Parc National Manu, Amazonie Peruvienne. Revue d'Ecologie (Terre Vie) 47:151197.CrossRefGoogle Scholar
SÄÄKSJÄRVI, I. E., RUOKOLAINEN, K., TUOMISTO, H., HAATAJA, S., FINE, P. V. A., CÁRDENAS, G., MESONES, I. & VARGAS, V. 2006. Comparing composition and diversity of parasitoid wasps and plants in an Amazonian rain-forest mosaic. Journal of Tropical Ecology 22:167176.CrossRefGoogle Scholar
SILMAN, M. R., ANCAYA, E. J. & BRINSON, J. 2003. Los bosques de bambú en la Amazonía occidental. Pp. 6372 in Leite, R., Pitman, N. & Alvarez, P. (eds.). Alto Purus: biodiversity, conservation, and management. Center for Tropical Conservation Press, Durham.Google Scholar
VAN SLUYS, M., VRCIBRADIC, D., ALVES, M. A. S., BERGALLO, H. G. & ROCHA, C. F. D. 2007. Ecological parameters of the leaf-litter frog community of an Atlantic rainforest area at Ilha Grande, Rio de Janeiro state, Brazil. Austral Ecology 32:254260.CrossRefGoogle Scholar
VASUDEVAN, K., KUMAR, A., NOON, B. R. & CHELLAM, R. 2008. Density and diversity of forest floor anurans in the rain forests of southern Western Ghats, India. Herpetologica 64:207215.CrossRefGoogle Scholar
VEITH, M., LÖTTERS, S., ANDREONE, F. & RÖDEL, M. O. 2004. Measuring and monitoring amphibian diversity in tropical forests. II. Estimating species richness from standardized transect censing. Ecotropica 10:8599.Google Scholar
VON MAY, R. & DONNELLY, M. A. 2009. Do trails affect relative abundance estimates of rainforest frogs and lizards? Austral Ecology 34:613620.CrossRefGoogle Scholar
VON MAY, R., SIU-TING, K., JACOBS, J. M., MEDINA-MÜLLER, M., GAGLIARDI, G., RODRÍGUEZ, L. O. & DONNELLY, M. A. 2009a. Species diversity and conservation status of amphibians in Madre de Dios, Perú. Herpetological Conservation and Biology 4:1429.Google Scholar
VON MAY, R., MEDINA-MÜLLER, M., DONNELLY, M. A. & SUMMERS, K. 2009b. Breeding-site selection by the poison frog Ranitomeya biolat in Amazonian bamboo forests: an experimental approach. Canadian Journal of Zoology 87:453464.CrossRefGoogle Scholar
WATLING, J. I. 2005. Edaphically-biased distributions of amphibians and reptiles in a lowland tropical rainforest. Studies of Neotropical Fauna and the Environment 40:1521.CrossRefGoogle Scholar