Skip to main content Accessibility help
×
  • Cited by 45
Publisher:
Cambridge University Press
Online publication date:
July 2014
Print publication year:
2001
Online ISBN:
9780511623745

Book description

This book was first published in 2001. It provides an introduction to Fourier analysis and partial differential equations and is intended to be used with courses for beginning graduate students. With minimal prerequisites the authors take the reader from fundamentals to research topics in the area of nonlinear evolution equations. The first part of the book consists of some very classical material, followed by a discussion of the theory of periodic distributions and the periodic Sobolev spaces. The authors then turn to the study of linear and nonlinear equations in the setting provided by periodic distributions. They assume only some familiarity with Banach and Hilbert spaces and the elementary properties of bounded linear operators. After presenting a fairly complete discussion of local and global well-posedness for the nonlinear Schrödinger and the Korteweg-de Vries equations, they turn their attention, in the two final chapters, to the non-periodic setting, concentrating on problems that do not occur in the periodic case.

Reviews

'Students and those beginning their academic career should find this text interesting and stimulating.'

Source: European Mathematical Society Newsletter

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

Bibliography
[1] L., Abdelouhab, J. L., Bona, M., Felland and J. C., Saut, Nonlocal models for nonlinear dispersive waves, Physica D 40 (1989) 360–392.
[2] R. A., Adams, Sobolev Spaces, Academic Press (1975).
[3] S., Agmon, Lectures on Elliptic Boundary Value Problems, Van Nostrand Math. Studies, vol. 2 (1965).
[4] S., Agmon, Spectral properties of Schrödinger operators and scattering theory, Ann. Scuola Sup. Pisa, CI. Sci. 2 (1975), 151-218.
[5] N. I., Akhiezer and I. M., Glazman, Theory of Linear Operators in Hilbert space, Dover Publ. (1993).
[6] J., Albert, Dispersion of low-energy waves for the generalized Benjamin–Bona–Mahony equation. J. Differ. Equations 63 (1986) 117–134.
[7] J., Albert, On the decay of solutions of the generalized Benjamin-Bona-Mahony equation. J. Math. Anal. Appl. 141 (2) (1989), 527–537.
[8] W. O., Amrein, J. M., Jauch and K. B., Sinha, Scattering Theory in Quantum Mechanics, W. A. Benjamin (1977).
[9] S. S., Antman, The equation for large vibrations of a string, Amer. Math. Monthly 87 (1980) 359–370.
[10] J. P., Antoine, F., Gesztesy and J., Shabani, Exactly solvable models of sphere interactions in quantum mechanics, J. Phys A: Math. Gen. 20 (1987) 3687–3712.
[11] T. M., Apostol, Calculus, vols 1 and 2, 2nd ed., Blaisdell (1969).
[12] J., Avrin, The generalized Benjamin–Bona–Mahony equation in ℝnwith singular initial data, Nonlin. Anal. Th. Meth. Appl. 11 (1987) 139–147.
[13] J., Avrin and J. A., Goldstein, Global existence for the Benjamin–Bona–Mahony equation in arbitrary dimensions, Nonlin. Anal. Th. Meth. Appl. 9 (1985) 861–865.
[14] G., Bachman and L., Narici, Functional Analysis, Academic Press (1966).
[15] J. M., Ball, Remarks on blow-up and nonexistence theorems for nonlinear equations, Quart. J. Math. Oxford (2) 28 (1977) 473–486.
[16] J. M., Ball, Finite time blow-up in nonlinear problems, in Nonlinear Evolutions Equations, M. G. Crandall, ed., Academic Press (1978), 189–205.
[17] R. G., Bartle, The Elements of Integration, Wiley (1966).
[18] R., Beals, Advanced Mathematical Analysis, Graduate Texts in Math., Springer (1973).
[19] M., Ben-Artzi and A., Devinatz, The limiting absorption principle for partial differential operators, Mem. Amer. Math. Soc. 66 (March 1987) no. 364.
[20] T. B., Benjamin, Internal Waves of Permanent Form in Fluids of Great Depth, J. Fluid Mech. 29, (1967), 559–592.
[21] T. B., Benjamin, J. L., Bona, and J. J., Mahony, Model equations for long waves in nonlinear dispersive systems, Phil. Trans. Roy. Soc. London, Ser. A 272 (1972) 47–78.
[22] Ju. M., Berezanskii, Expansions in eigenfunctions of Selfadjoint operators, Translations of Mathematical Monographs, vol. 17, AMS (1968).
[23] M. S., Berger, Nonlinearity and Functional Analysis, Academic Press (1977).
[24] G., Rodriguez-Bianco, On the Cauchy problem for the Camassa-Holm equation, Preprint IMPA/CNPq (1999). To appear in Nonlinear Analysis: Theory, Methods and Applications.
[25] M., Blaszak, Multi-Hamiltonian Theory of Dynamical Systems, Springer (1998).
[26] J. L., Bona, R., Rajopadhye and M. E., Shonbek, Propagation of bores I: Two dimensional theory, Diff. Int. Eq. 1 (3-4) (1994) 699–734.
[27] J. L., Bona, S. V., Rajopadhye and M., Schonbek, Models for propagation of bores, I: Two-dimensional theory, Diff. Int. Eq. 7 (3-4) (1994) 699–734.
[28] J. L., Bona and M., Scialom, On the comparison of solutions of model equations for long waves. Mat. Contemp. 8 (1995) 21–37.
[29] J. L., Bona and R., Scott, Solutions of the Korteweg-de Vries equation in fractional order Sobolev spaces, Duke Math. J. 43 (1976) 87–99.
[30] J. L., Bona and R., Smith, The initial value problem for the Korteweg-de Vries equation, Phil. Trans. Roy. Soc. London, Ser. A 278 (1975) 555–604.
[31] J. L., Bona, H., Biagioni, R. J., Iorio Jr. and M., Scialom, On the Cauchy problem for the Korteweg–de Vries Kuramoto–Sivashinski equation, Adv. Diff. Eq. 1 (1996) 1–20.
[32] M. P, de Borba, The intermediate long wave equation in weighted Sobolev spaces, Mat. Contemp. 3 (1992) 9–20.
[33] J., Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear equations. I Schrödinger equations, Geom. Funct. Anal. 3 (1993) 107–156.
[34] J., Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear equations. II The KdV equation, Geom. Funct. Anal 3 (1993) 209–262.
[35] J., Bourgain, On the Cauchy problem for the Kadomtsev–Petviashvili equation, Geom. Fund. Anal. 3 (1993) 315–341.
[36] J., Bourgain, On the Cauchy problem for periodic KdV-type equations, J. Fourier Anal. Appl, Kahane Special Issue (1995) 17–86.
[37] W. E., Boyce and R. C., DiPrima, Elementary Differential Equations and Boundary Value Problems, 3rd ed., Wiley (1977).
[38] S., Brandt and H. D., Dahmen, The Picture Book of Quantum Mechanics, 2nd ed., Springer (1995).
[39] P. L., Butzer and R. J., Nessel, Fourier Analysis and Approximation, Volume I. One Dimensional Theory, Birkhäuser (1971).
[40] K. M., Case, Benjamin -Ono related equations and their solutions, Proc. Nat. Acad. Sci. U.S.A. 76 (1) (1979) 1–3.
[41] T., Cazenave, An Introduction to Nonlinear Schrödinger Equations, 3rd ed., Textos Matemáticos, vol. 26, Instituto de Matemática – UFRJ, Rio de Janeiro (1996).
[42] T., Cazenave, Blow-Up and Scattering in the Nonlinear Schrödinger Equation, 2nd ed., Textos Matemáticos, vol. 26, Instituto de Matemática – UFRJ, Rio de Janeiro (1996).
[43] P. R., Chernoff, Pointwise convergence of Fourier Series, Amer. Math. Monthly 87 (1980) 399–400.
[44] R. V., Churchill, Fourier Series and Boundary Value Problems, 2nd ed., McGraw-Hill (1963).
[45] E. A., Coddington and N., Levinson, Theory of Ordinary Differential Equations, McGraw-Hill (1955).
[46] A., Constantin, The Hamiltonian structure of the Camassa–Holm equation, Expos. Math. 15 (1997) 53–85.
[47] H. O., Cordes, Elliptic Pseudodifferential Operators: an Abstract Theory, Lecture Notes in Math., vol. 756, Springer (1979).
[48] R., Courant and D., Hilbert, Methods of Mathematical Physics, Interscience Publishers, 1962.
[49] H. L., Cycon, R. G., Froese, W., Kirsh and B., Simon, Schrödinger Operators, Springer (1987).
[50] K., Deimling, Nonlinear Functional Analysis, Springer (1985).
[51] J., Derezinski and C., Gérard, Scattering Theory of Classical and Quantum N-Particle Systems, Springer (1997).
[52] D., Dix, Temporal asymptotic behaviour of solutions of the Benjamin–Ono–Burgers equation, J. Differ. Equations 90 (2) (1991) 238–287.
[53] D., Dix, Nonuniqueness and uniqueness in the initial-value problem for Burgers' equation, SIAM J. Math. Anal. 27, (3) (1996) 708–724.
[54] G. F. D., Duff and D., Naylor, Differential Equations of Applied Mathematics, Wiley (1966).
[55] H., Dym and H. P., McKean, Fourier Series and Integrals, Academic Press (1972).
[56] R. E., Edwards, Fourier Series, a Modern Introduction, vols I and II, Holt, Rinehart and Winston (1967).
[57] B., Epstein, Partial Differential Equations: an Introduction, McGraw-Hill (1962).
[58] L. D., Faddeev and L. A., Takhtajan, Hamiltonian Methods in the Theory of Solitons, Springer (1987).
[59] C. L., Fefferman, The uncertainty principle, Bull. Am. Math. Soc. New Ser. 9 (1983) 129–206.
[60] G. B., Folland, Introduction to Partial Differential Equations, Mathematical Notes, Princeton University Press (1976).
[61] G. B., Folland and A., Sitaram, The uncertainty principle: a mathematical survey, J. Fourier Anal. Appl. 3 (1997) 207–238.
[62] H., Fujita, On the blowing-up of solutions of the Cauchy problem for ut = Δu + u1+α, J. Fac. Sci. Univ. Tokyo, Sect. 1, 13 (1966) 109–124.
[63] W., Fulks, Advanced Calculus, Wiley (1964).
[64] P. R., Garabedian, Partial Differential Equations, Wiley (1964).
[65] I. M., Gel'Fand and G. E., Shilov, Generalized Functions, vol. 1, Academic Press (1964).
[66] I. M., Gel'Fand and G. E., Shilov, Generalized Functions, vol. 2, Academic Press (1968).
[67] I. M., Gel'Fand and G. E., Shilov, Generalized Functions, vol. 3, Academic Press (1967).
[68] I. M., Gel'Fand and N. Ya., Vilenkin, Generalized Functions, vol. 4, Academic Press (1964).
[69] D., Gilbarg and S., Trudinger, Elliptic Partial Differential Equations of Second Order, Springer (1977).
[70] K., Gottfried, Quantum Mechanics, vol. 1: Fundamentals, W. A. Benjamin (1966).
[71] K. E., Gustafson, Introduction to Partial Differential Equations and Hilbert Space Methods, Wiley (1980).
[72] P., Hartman, Ordinary Differential Equations, 2nd ed., Birkhäuser (1982).
[73] D., Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, vol. 840, Springer (1981).
[74] P., Hess, Periodic-parabolic Boundary Value Problems and Positivity, Pitman Research Notes in Mathematics Series, 247, Longman Scientific & Technical, Longman House (1991).
[75] E., Hille, Methods in Classical and Functional Analysis, Addison-Wesley (1972).
[76] E., Hille and R. S., Phillips, Functional Analysis and Semigroups, revised ed., Amer. Math. Soc. Colloq. Pub., vol. 31 (1957).
[77] K., Hoffman and R., Kunze, Linear Algebra, 2nd ed., Prentice-Hall (1971).
[78] L., Hörmander, Linear Partial Differential Operators, Springer (1976).
[79] L., Hörmander, The Analysis of Linear Partial Differential Operators. I. Distribution Theory and Fourier Analysis, 2nd ed. Grundlehren der Mathematischen Wissenschaften, 256. Springer-Verlag (1990).
[80] R. J., Iorio Jr., KdV, BO and friends in weighted Sobolev spaces, in Function-Analytic Methods for Partial Differential Equations, Lecture Notes in Mathematics, vol. 1450, Springer (1990) 105–121.
[81] R. J., Iorio Jr. and W. V. Leite, Nunes, On equations of KP type, Proceedings of the Royal Society of Edinburgh, 128A (1998), 725–743.
[82] R. J., Iorio Jr., F., Linares and M., Scialom, KdV, and BO equations with bore-like data, Differential and Integral Equations, 11 (1998) 895–915.
[83] J. D., Jackson, Classical Electrodynamics, Wiley (1962).
[84] A., Jensen, Scattering theory for Stark Hamiltonians, Proc. Indian Acad. Sci. (Math. Sci.) 104 (1994) 599–651.
[85] A., Jensen and H., Kitada, Fundamental solutions and eigenfunction expansions for Schrödinger operators. II. Eigenfunction expansions., Math. Z. 199 (1988) 1–13.
[86] F, John, Partial Differential Equations. 4th ed., Applied Mathematical Sciences, vol. 1. Springer (1982).
[87] T., Kato, Wave operators and similarity for some non-self-adjoint operators, Math. Ann. 162 (1966) 258–269.
[88] T., Kato, Perturbation Theory for Linear Operators, 3rd ed., Springer (1995).
[89] T., Kato, Quasilinear Equations of Evolution with Applications to Partial Differential Equations, in Lecture Notes in Math. vol. 448, Springer (1975) 25–70.
[90] T., Kato, On the Korteweg–de Vries equation, Manuscripta Math. 28, (1979) 89–99.
[91] T., Kato, On the Cauchy Problem for the (generalized) Korteweg–de Vries Equation, Advances in Mathematics Supplementary Studies, vol. 8, M. G., Crandall, ed., Academic Press (1983) 93–128.
[92] T., Kato, Weak solutions of infinite-dimensional Hamiltonian systems, in Frontiers in Pure and Applied Mathematics, R., Dautray, ed., North-Holland, (1991) 133–149.
[93] T., Kato, On nonlinear Schrödinger equations, Ann. Inst. Henri Poincaré, Physique Théorique 46, (1987) 113–129.
[94] T., Kato, Abstract Evolution Equations, Linear and Quasilinear, Revisited, Lecture Notes in Math. 1540, Springer (1992) 103–125.
[95] T., Kato and S. T., Kuroda, The abstract theory of scattering, Rocky Mountain J. Math. 1, no. 1 (1970) 127–171.
[96] T., Kato and C. Y., Lai, Nonlinear equations and the Euler flow, J. Funct. Anal. 56 (1984) 15–28.
[97] O., Kavian, Remarks on the large time behaviour of a nonlinear diffusion equation, Ann. Inst. Henri Poincaré 4, no. 5 (1987) 432–452.
[98] Y., Katznelson, An introduction to Harmonic Analysis, Dover Publ. (1976).
[99] J., Kelley, General Topology, Van Nostrand-Reinhold (1955).
[100] C. E., Kenig, G., Ponce, and L., Vega, The Cauchy problem for the Korteweg–de Vries equation in Sobolev spaces of negative indices, Duke Math. J. 71 (1993) 1–21.
[101] C. E., Kenig, G., Ponce, and L., Vega, Small solutions to nonlinear Schrödinger equations, Ann. I HP, Anal. Non Lin. 10 (1993) 255–288.
[102] C. E., Kenig, G., Ponce, and L., Vega, Well-posedness and scattering results for the generalized Korteweg–de Vries equation via contraction principle, Comm. Pure Appl. Math. 46 (1993) 527–620.
[103] C. E., Kenig, G., Ponce, and L., Vega, A bilinear form with application to the KdV equation, J. Amer. Math. Soc. 9 (1996) 573–603.
[104] V., Khatskevich and D., Shoiyaket, Differentiable Operators and Nonlinear Equations, Birkhäuser (1994).
[105] A. N., Kolmogorov and S. V., Fomin, Introductory Real Analysis, Dover Publ. (1970). Translated from the 2nd Russian ed.
[106] D. L., Kreider, R. G., Kuller, D. R., Ostberg and F. W., Perkins, An Introduction to Linear Analysis, Addison-Wesley (1966).
[107] S., Kruzkhov and A., Faminskii, Generalized solutions of the Cauchy problem for the Korteweg–de Vries equation, Math. USSR Sbornik 48 (1984) 391–421.
[108] S., Lang, Real and Functional Analysis, 3rd ed., Graduate Texts in Math., Springer (1993).
[109] P. D., Lax, A Hamiltonian approach to KdV and other equations, in Nonlinear Evolution Equations, M. G., Crandall, ed., Academic Press (1985) 207–224.
[110] M. J., Lighthill, Introduction to Fourier Analysis and Generalized Functions, Cambridge Univ. Press (1964).
[111] I. G., Main, Vibrations and Waves in Physics, 2nd ed., Cambridge Univ. Press (1984).
[112] F. A., Mehmeti and S., Nicaise, Nemytskifs operator and global existence of small solutions of semilinear evolution equations on nonsmooth domains, Comm. Part. Diff. Eq. 22 (9 & 10) (1997) 1559–1588.
[113] E., Merzbacher, Quantum Mechanics, 2nd ed., Wiley (1970).
[114] S. G., Mikhlin, Mathematical Physics: an Advanced Course, North-Holland (1970).
[115] R. M., Miura, The Korteweg–de Vries equation: a survey of results, SIAM Rev. 18 (3) (1976) 412–459.
[116] A. C., Newell, Solitons in Mathematics and Physics, Regional Conference Series in Applied Mathematics, SIAM (1985).
[117] S., Novikov, S. V., Manakov, L. P., Pitaeviskii and V. E., Zakharov, Theory of Solitons - The Inverse Scattering Method, Contemporary Soviet Mathematics, Consultants Bureau, New York (1984).
[118] W. V. L., Nunes, Global well-posedness for the transitional Korteweg–de Vries equation, Appl. Math. Lett. 11 (1998) 15–20.
[119] T., Ogawa and Y., Tsutsumi, L2 solutions for the Initial Boundary Value Problem of the Korteweg–de Vries Equation with Periodic Boundary Conditions, Proceedings of the 6th symposium on nonlinear partial differential equations, Tokyo, Japan, April 4-6, 1989, K., Masuda et al (ed.), Tokyo: Kinokunya. Lect. Notes Num. Appl. Anal. 11 (1991) 187–202.
[120] H., Ono, Algebraic solitary waves in stratified fluids, J. Phys. Soc. Japan 39 (1975) 1082–1091.
[121] A., Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer (1983).
[122] I. G., Petrovski, Ordinary Differential Equations, Dover Publ. (1973).
[123] R. G., Pinsky, The behavior of the life span for solutions to ut = Δu + a (x) up, J. Diff. Eq. 147 (1998) 30–57.
[124] G., Ponce, On the global well-posedness of the Benjamin–Ono equation, Differ. Integral Equ. 4 (3) (1991) 527–542.
[125] G., Ponce, Notas Sobre el Problema de Valores Iniciales Associado a la Ecuación de Onda, III Escuela de Verano en Geometria Diferencial, Ecuaciones Diferenciales Parciales y Analysis Numérico, Univ. de los Andes, Santafé de Bogotá (1995).
[126] J. L., Powell and B., Crasemann, Quantum Mechanics, Addison-Wesley (1961).
[127] R. T., Prosser, A double scale of weighted L2 spaces, Bull. Amer. Math. Soc. 81, (3) (1975) 615–618.
[128] M. H., Protter and H. F., Weinberger, Maximum Principles in Differential Equations, Prentice Hall (1967).
[129] M. H., Protter and C. B., Morrey, A First Course in Real Analysis, Undergraduate Texts in Mathematics, Springer (1977).
[130] M. H., Protter, Review of the book Equations of Mixed Type, by M. M. Smirnov, Bull. Amer. Math. Soc. (New Ser.) 3 (1979) 534–538.
[131] S., Rajopadhye, Propagation of bores II: Three-dimensional theory, Nonlin. Anal. Th. Meth. Appl. 27 (8) (1996) 963–986.
[132] M., Reed and B., Simon, Methods of Modern Mathematical Physics, vol. I: Functional Analysis, Academic Press (1972).
[133] M., Reed and B., SimonMethods of Modern Mathematical Physics, vol. II: Fourier Analysis, Self-Adjointness, Academic Press (1975).
[134] M., Reed and B., Simon, Methods of Modern Mathematical Physics, vol. IV: Academic Press (1977).
[135] M., Reed and B., Simon, Methods of Modern Mathematical Physics, vol. III: Scattering Theory, Academic Press (1978).
[136] R. D., Richtmyer, Principles of Advanced Mathematical Physics, vol. I, Springer (1978).
[137] F., Riesz and B., Sz-Nagy, Functional Analysis, Frederick Ungar (1955). Translated from the 2nd French ed.
[138] E. E., Rosinger, Generalized Solutions of Nonlinear Partial Differential Equations, North-Holland Mathematics Studies, vol. 146 (1987).
[139] H. L., Royden, Real Analysis, 2nd ed., Macmillan (1968).
[140] W., Rudin, Fourier Analysis on Groups, Wiley (1963).
[141] W., Rudin, Functional Analysis, McGraw-Hill (1973).
[142] W., Rudin, Real and Complex Analysis, 2nd ed., McGraw-Hill (1974).
[143] W., Rudin, Principles of Mathematical Analysis, 3rd ed., McGraw-Hill-Kogakusha (1976).
[144] M., Schecter, Operator Methods in Quantum Mechanics, Elsevier-North-Holland (1981).
[145] L., Schwartz, Méthodes mathématiques pour les sciences physiques, 2nd éd., Hermann (1965).
[146] L., Schwartz, Théorie des distributions, Hermann (1973).
[147] R., Shankar, Principles of Quantum Mechanics, Plenum Press (1980).
[148] G. F., Simmons, Introduction to Topology and Modem Analysis, McGraw-Hill (1963).
[149] B., Simon, Schrödinger semigroups, Bull. Amer. Math. Soc. (New Ser.) 7 (1982) 447–526.
[150] M. M., Smirnov, Equations of Mixed Type, Translations of Mathematical Monographs, Amer. Math. Soc., vol. 51 (1978).
[151] S. L., Sobolev, Partial Differential Equations of Mathematical Physics, Addison-Wesley (1964). Translated from the 3rd Russian ed.
[152] Ph., Souplet, Blow-up in nonlocal reaction diffusion equations, SIAM J. Math. 29 (6) (1998) 1301–1334.
[153] I., Stakgold, Green's Functions and Boundary Value Problems, Wiley (1979).
[154] M., Stone, Linear Transformations in Hilbert Space and their Applications to Analysis, Amer. Math. Soc. Colloq. Publ., vol. 15 (1932).
[155] J. A., Stratton, Eletromagnetic Theory, McGraw-Hill (1941).
[156] K. R., Symon, Mechanics, 2nd ed., Addison-Wesley (1960).
[157] R., Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer (1988).
[158] A., Torchinsky, Real Variable Methods in Harmonic Analysis, Academic Press (1986).
[159] M., Tsutsumi, Weighted Sobolev spaces and rapidly decreasing solutions of some nonlinear dispersive equations, J. Diff. Eq. 42 (1981) 260–281.
[160] K., Yosida, Functional Analysis, 2nd ed., Springer (1968).
[161] G. B., Whitham, Linear and Nonlinear Waves, Wiley (1974).
[162] D. V., Widder, The Heat Equation, Academic Press (1975).
[163] S., Willard, General Topology, Addison-Wesley (1970).
[164] E. C., Zachmanoglou and D., Thoe, Introduction to Partial Differential Equations with Applications, Williams and Wilkins (1976).
[165] J. D., Zuazo, Análisis de Fourier, Addison-Wesley/Univ. Autónoma de Madrid (1995).
[166] A., Zygmund, Intégrales singulières, Lecture Notes in Mathematics, vol. 204, Springer (1971).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.