Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-25T08:28:49.403Z Has data issue: false hasContentIssue false

THE WATER RELATIONS AND IRRIGATION REQUIREMENTS OF OLIVE (Olea europaea L.): A REVIEW

Published online by Cambridge University Press:  07 May 2013

M. K. V. CARR*
Affiliation:
Emeritus Professor, School of Applied Sciences, Cranfield University, Cranfield, Bedfordshire MK43 0AL, UK
*
Corresponding author. Email: mikecarr@cwms.org.uk; contact address: Pear Tree Cottage, Frog Lane, Ilmington, Shipston on Stour, Warwickshire CV36 4LQ, UK.

Summary

The results of research on the water relations and irrigation needs of olive are collated and summarised in an attempt to link fundamental studies on crop physiology to irrigation practices. Background information on the ecology of the olive (it is native to the coastal areas of the eastern Mediterranean) and on crop development processes are presented, followed by reviews of the influence of water stress on gas exchange (stomatal conductance, photosynthesis and transpiration), crop water requirements, water productivities and irrigation systems. The olive has many attributes that help to protect it against drought, including the morphology of the leaf, and the capacity to conserve water under conditions of high evaporative demand through stomatal closure, osmotic regulation and resistance to cavitation. The concept of ‘deficit irrigation’ has been the subject of much research. Although vegetative growth is restricted, there is no convincing evidence that ‘sustained deficit irrigation’ or ‘regulated deficit irrigation’ or ‘partial root zone drying’ offer any advantages over conventional practices. Water productivities are very variable and difficult to reconcile due, in part, to biennial bearing, tree-to-tree variability and differences in tree population densities. Similarly, no clear consensus has emerged on how best to exploit the sensitivity of trunk expansion to water availability in irrigation scheduling. As production methods for this historical crop are intensified (high-density hedgerows, irrigated and mechanized orchards), so will the need to understand the role that water plays in the production processes become ever more critical.

Type
Review Paper
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ahmed, C. B., Rouina, B. B. and Boukhris, M. (2007). Effects of water deficit on olive trees cv. Chemlali under field conditions in arid region in Tunisia. Scientia Horticulturae 113:267277.Google Scholar
Allen, R. G., Pereira, L. S., Raes, D. and Smith, M. (1998). Crop evapotranspiration-guidelines for computing crop water requirements. UN Food and Agriculture Organisation, Irrigation and Drainage Paper 56, Rome, Italy.Google Scholar
Ayers, R. S. and Westcot, D. W. (1985). Water quality for agriculture. UN Food and Agriculture Organisation, Irrigation and Drainage Paper 29, Rome, Italy.Google Scholar
Bacelar, E. A., Correia, C. M., Moutinho, J. M., Gonçalves, B. C., Lopes, J. I. and Pereira, J. M. G. (2004). Sclerophylly and leaf anatomical traits of five field-grown olive cultivars growing under drought conditions. Tree Physiology 24:233239.Google Scholar
Barranco, D., Fernández-Escobar, R. and Rallo, L. (Eds.) (2010). Olive Growing, 1st English edn. Kingston, Australia: Rural Industries Research and Development Corporation.Google Scholar
Beede, R. and Goldhamer, D. (1994). Olive irrigation management. In: Olive Production Manual (Eds Ferguson, L., Sibbett, G. and Martin, G.), publication No. 335. Berkeley, CA: University of California.Google Scholar
Carr, M. K. V. (2009). The water relations and irrigation requirements of banana (Musa spp.). Experimental Agriculture 45:333371.CrossRefGoogle Scholar
Carr, M. K. V. (2011). The water relations and irrigation requirements of coconut (Cocos nucifera L.): a review. Experimental Agriculture 47:2751.CrossRefGoogle Scholar
Carr, M. K. V. (2012a). The water relations and irrigation requirements of citrus (Citrus spp.): a review. Experimental Agriculture 48:347377.Google Scholar
Carr, M. K. V. (2012b). The water relations and irrigation requirements of pineapple (Ananus comosus var. comosus): a review. Experimental Agriculture 48:488501.CrossRefGoogle Scholar
Caruso, G., Rapoport, H. F. and Gucci, R. (2011). Long-term evaluation of yield components of young olive trees during the onset of fruit production under different irrigation regimes. Irrigation Science. doi:10.1007/s00271-011-0286-0.Google Scholar
Castro, G., Romera, P., Gómez, J. A. and Fereres, E. (2006). Rainfall redistribution beneath an olive orchard. Agricultural Water Management 86:249258.Google Scholar
Centritto, M., Wahbi, S., Serraj, R. and Chaves, M. M. (2005). Effects of partial root zone drying (PRD) on adult olive tree (Olea europaea) in field conditions under arid climate II. Photosynthetic responses. Agriculture, Ecosystems and Environment 106:303311.Google Scholar
Chartzoulakis, K., Bosabalidis, A., Patakas, A. and Vemmos, S. (2000). Effects of water stress on water relations, gas exchange and leaf structure of olive tree. Acta Horticulturae 537:241247.Google Scholar
Cimato, A., Castelli, S., Tattini, M. and Traversi, M. L. (2010). An ecophysiological analysis of salinity tolerance in olive. Environmental and Experimental Botany 68:214221.CrossRefGoogle Scholar
Connor, D. J. (2005). Adaptation of olive (Olea europaea) to water-limited environments. Australian Journal of Agricultural Research 56 (11):11811189.Google Scholar
Connor, D. J. (2006). Towards optimal design for hedgerow olive orchards. Australian Journal of Agricultural Research 57:10671072.Google Scholar
Connor, D. J. and Fereres, E. (2005). The physiology of adaptation and yield expression in olive. Horticultural Reviews 34:155229.Google Scholar
Connor, D. J., Gómez-del-Campo, M. and Cornas, J. (2012). Yield characteristics of N-S orientated olive hedgerow orchards, cv. Arbequina. Scientia Horticulturae 133:3136.Google Scholar
Connor, D. J., Loomis, R. S. and Cassman, K. G. (2011). Crop Ecology, 2nd edn. Cambridge, UK: Cambridge University Press, 286 pp.Google Scholar
Correa-Tedesco, G., Rousseaux, M. C. and Searles, P. (2010). Plant growth and yield responses in olive (Olea europaea) to different irrigation levels in an arid region of Argentina. Agricultural Water Management 97:18291837.CrossRefGoogle Scholar
Cuevas, M. V., Martín-Palomo, M. J., Díaz-Espejo, A., Torres-Ruiz, J. M., Rodriguwez-Dominguez, C. M., Perez-Martin, A., Pino-Mejías, R. and Fernández, J. E. (2012). Assessing water stress in a hedgerow olive orchard from sap flow and trunk diameter measurements. Irrigation Science. doi:10.1007/s00271-012-0357-x.Google Scholar
Cuevas, M. V., Torres-Ruiz, J. M., Álvarez, R., Jiménez, M. D., Cuerva, J. and Fernández, J. E. (2010). Assessment of trunk diameter variation derived indices as water stress indicators in mature olive trees. Agricultural Water Management 97:12931302.Google Scholar
Dabbou, S., Chehab, H., Faten, B., Dabbou, S., Esposto, S., Selvaginni, R., Taticchi, A., Servili, M., Montedoro, G. F. and Hammami, M. (2010). Effect of three irrigation regimes on Arbequina olive oil produced under Tunisian growing conditions. Agricultural Water Management 97:763768.Google Scholar
Díaz-Espejo, A., Walcroft, A. S., Fernández, J. E., Hafidi, B., Palomo, M. J. and Girón, I. F. (2006). Modeling photosynthesis in olive trees under drought conditions. Tree Physiology 26:14451456.CrossRefGoogle ScholarPubMed
Doorenbos, J. and Kassam, A. H. (1979). Yield response to water. Food and Agriculture Organisation of the United Nations, Irrigation and Drainage Paper 33, Rome, Italy.Google Scholar
Doorenbos, J. and Pruitt, W. (1974). Crop water requirements. Food and Agriculture Organisation of the United Nations, Irrigation and Drainage Paper 24, Rome, Italy.Google Scholar
Ennajeh, M., Tounekti, T., Vadel, A. M., Khemira, H. and Cochard, H. (2008). Water relations and drought-induced embolism in olive (Olea europaea) varieties ‘Meski’ and ‘Chemlali’ during severe drought. Tree Physiology 28:971976.Google Scholar
Ennajeh, M., Vadel, A. M., Khemira, H., Ben Mimoun, and Helali, R. (2006). Defence mechanisms against water deficit in two olive (Olea europaea) cultivars ‘Meski’ and ‘Chemlali’. Journal of Horticultural Science & Biotechnology 81:99104.Google Scholar
Er-Raki, S., Chebouni, A., Boulet, G. and Williams, D. G. (2010). Using the dual approach of FAO-56 for partitioning ET into soil and plant components for olive orchards in a semi-arid region. Agricultural Water Management 97:17691778.Google Scholar
FAO. (2005). Olive germplasm: cultivars and world wide collections. Available at: http://apps3.fao.org/wiews/olive/olivcv4.jsp (accessed October 2012).Google Scholar
FAO. (2012). FAOSTAT crops. Available at: http://faostat.org.site/335/default.aspx (accessed October 2012).Google Scholar
Fereres, E. (Ed.). (2012). Fruit trees and vines. Section 4.1 Olive. In Crop Yield Response to Water, Irrigation and Drainage Paper 66, 298313 (Eds Steduto, P., Hsiao, T. C., Fereres, E. and Raes, D.). Rome: Food and Agriculture Organisation of the United Nations.Google Scholar
Fereres, E., Goldhamer, D. A. and Sadras, V. O. (2012). Yield responses to water of fruit trees and vines, Chapter 4. In Crop Yield Response to Water, FAO Irrigation and Drainage Paper 66, 246497 (Eds Steduto, P., Hsiao, T. C., Fereres, E. and Raes, D.). Rome, Italy: FAO.Google Scholar
Fereres, E., Martinich, D. A., Aldrich, T. M., Castel, J. R. and Schulbach, E. H. (1982). Drip irrigation saves money in young almond orchards. California Agriculture 36:1213.Google Scholar
Fereres, E., Villalobos, F. J., Orgaz, F. and Testi, L. (2011). Water requirements and irrigation scheduling in olive. Acta Horticulturae 888:3139.Google Scholar
Fernández, J. E. and Cuevas, M. V. (2010). Irrigation scheduling from stem diameter variations: a review. Agricultural and Forest Meteorology 150:135151.Google Scholar
Fernández, J. E., Díaz-Espejo, A., Infante, J. M., Durán, P., Palomo, M. J., Chamorro, V., Girón, I. F. and Villagarcía, L. (2006). Water relations and gas exchange in olive trees under regulated deficit irrigation and partial root zone drying. Plant and Soil 284:273291.Google Scholar
Fernández, J. E., Green, S. R., Caspari, H. W., Diaz-Espejo, A. and Cuevas, M. V. (2008). The use of sap flow measurements for scheduling irrigation in olive, apple and Asian pear trees and in grapevines. Plant and Soil 305:91104.Google Scholar
Fernández, J. E. and Moreno, F. (1999). Water use by olive tree. Journal of Crop Production 2 (2):101162.Google Scholar
Fernández, J. E., Moreno, F., Cabrera, F., Arrue, J. L. and Martín-Aranda, J. (1991). Drip irrigation, soil characteristics and the root distribution and root activity of olive trees. Plant and Soil 133:239251.CrossRefGoogle Scholar
Fernández, J. E., Moreno, F., Girón, I. F. and Blázquez, O. M. (1997). Stomatal control of water use in olive tree leaves. Plant and Soil 190:179192.Google Scholar
Fernández, J. E., Moreno, F., Martin-Palomo, M. J., Cuevas, M. V., Torres-Ruiz, J. M. and Moriana, A. (2011a). Combining sap flow and trunk diameter measurements to assess water needs in mature olive orchards. Environmental and Experimental Botany 72:330338.CrossRefGoogle Scholar
Fernández, J. E., Palomo, M. J., Diaz-Espejo, A., Clothier, B. E., Green, S. R., Girón, I. F. and Moreno, F. (2001). Heat-pulse measurements of sap flow in olives for automating irrigation: tests, root flow and diagnostics of water stress. Agricultural Water Management 51:99123.CrossRefGoogle Scholar
Fernández, J. E., Rodriguez-Dominguez, C. M., Perez-Martin, A., Zimmerman, U., Rüger, S., Martin-Palomo, M. J., Torres-Ruiz, J. M., Cuevas, M. V., Sann, C., Ehrenberger, W. and Diaz-Espejo, A. (2011b). Online monitoring of tree water stress in hedgerow olive orchard using the leaf patch clamp pressure probe. Agricultural Water Management 100 (1):2535.Google Scholar
Fernández, J. E., Torres-Ruiz, J. M., Diaz-Espejo, A., Montero, A., Alvarez, R., Jiménez, M. D., Cuerva, J. and Cuevas, M. V. (2011c). Use of maximum trunk diameter measurements to detect water stress in mature ‘Arbequina’ olive trees under deficit irrigation. Agricultural Water Management 98:18131821.Google Scholar
Flynn, D. and Mondavi, R. (2009). Survey: Super-High-Density Olive Production in California. Report of Olive Center, University of California, Davis, California, 7 pp.Google Scholar
García-Cabello, S., Pérez-Rodriguez, M., Blanco-López, M. A. and López-Escudero, F. J. (2012). Distribution of Verticillium dahlia through watering systems in widely irrigated olive growing areas in Andalucia (southern Spain). European Journal of Plant Pathology 133:877885.Google Scholar
Goldhamer, D. A. (1999). Regulated deficit irrigation for California canning olives. Acta Horticulturae 474:369372.Google Scholar
Gómez-del-Campo, M. (2007). Effect of water supply on leaf area development, stomatal activity, transpiration, and dry matter production and distribution in young olive trees. Australian Journal of Agricultural Research 58 (5):385391.Google Scholar
Grattan, S. R., Berenguer, M. J., Connell, J. H., Polito, V. S. and Vossen, P. M. (2006). Olive oil production as influenced by different quantities of applied water. Agricultural Water Management 85:133140.Google Scholar
Greven, M., Neal, S., Green, S., Dichio, B. and Clothier, B. (2009). The effects of drought on the water use, fruit development and oil yield. Agricultural Water Management 96:15251531.Google Scholar
Gucci, R. and Tattini, M. (1997). Salinity tolerance in olive. Horticultural Reviews 2:177214.Google Scholar
Guerfel, M., Ouni, Y., Boujnah, D. and Zarrouk, M. (2010). Effects of planting density on water relations and production of ‘Chemlali’ olive trees (Olea europaea). Trees 24:11371142.CrossRefGoogle Scholar
Hendrickson, A. H. and Veihmeyer, F. J. (1949). Irrigation Experiments with Olives. Bulletin No. 715. Berkeley, CA: California Agricultural Experiment Station, College of Agriculture, University of California.Google Scholar
Hu, F. B. (2003). The Mediterranean diet and mortality-olive oil and beyond. The New England Journal of Medicine 348 (26):25952596.Google Scholar
Iniesta, F., Testi, L., Orgaz, F. and Villalobos, F. J. (2009). The effects of regulated and continuous deficit irrigation on the water use, growth and yield of olive trees. European Journal of Agronomy 30:258265.Google Scholar
IOC. (2007). Irrigation, Chapter 6. In Production Techniques in Olive Growing, 169209. Madrid, Spain: International Olive Council. Available at: http://www.internationaloliveoil.org.Google Scholar
Jorba, J., Tapia, L. and Sant, D. (1985). Photosynthesis, leaf water potential and stomatal conductance in Olea europaea under wet and drought conditions. Acta Horticulturae 171:237246.Google Scholar
Kailis, S. and Harris, D. (2007). Producing Table Olives. Australia: CSIRO, Landlinks Press.Google Scholar
Lavee, S., Honoch, E., Wodner, M. and Abramowitch, H. (2007). The effect of predetermined deficit irrigation on the performance of cv. Muhasan olives (Olea europaea L.) in the eastern coastal plain of Israel. Scientia Horticulturae 112:156163.CrossRefGoogle Scholar
Maas, E. V. and Hoffman, M. (1977). Crop salt tolerance – current assessment. Journal of the Irrigation and Drainage Division (ASCE), 103 (IR2):115134.Google Scholar
Mailer, R. and Ayton, J. (2011). Effect of irrigation and water stress on olive oil quality and yield based on a four-year study. Acta Horticulturae 888:6372.Google Scholar
Martín-Vertedor, A. I., Rodríguez, J. M. P., Losada, H. P. and Castiel, E. F. (2011a). Interactive responses to water deficits and crop load in olive (Olea europaea L., cv. Morisca). I: growth and water relations. Agricultural Water Management 98:941949.CrossRefGoogle Scholar
Martín-Vertedor, A. I., Rodríguez, J. M. P., Losada, H. P. and Castiel, E. F. (2011b). Interactive responses to water deficits and crop load in olive (Olea europaea L., cv. Morisca). II: water use, fruit and oil yield. Agricultural Water Management 98:950958.Google Scholar
Masmoudi, C. C., Ayachi, M. M., Gouia, M., Laabidi, F., Reguaya, S. B., Amor, A. O. and Bousnina, M. (2010). Water relations of olive trees cultivated under deficit irrigation regimes. Scientia Horticulturae 125:573578.Google Scholar
Melgar, J. C., Mohamed, Y., Navarro, C., Parra, M. A. and Benlloch, M. (2008). Long-term growth and yield responses of olive trees to different irrigation regimes. Agricultural Water Management 95:968972.CrossRefGoogle Scholar
Melgar, J. C., Mohamed, Y., Serrano, N., García-Galavís, P. A., Navarro, C., Parra, M. A., Benlloch, M. and Fernández-Escobar, R. (2009). Long-term responses of olive trees to salinity. Agricultural Water Management 96:11051113.Google Scholar
Moreno, F., Canejero, W., Martin-Palomo, M. J., Girón, I. F. and Torrecillas, A. (2006). Maximum daily trunk shrinkage reference values for irrigation scheduling in olive trees. Agricultural Water Management 84:290294.Google Scholar
Moreno, F., Fernández, J. E., Clothier, B. and Green, S. R. (1996). Transpiration and root water uptake by olive trees. Plant and Soil 184:8596.Google Scholar
Moriana, A., Fereres, E., Orgaz, F., Castro, J., Humanes, M. D. and Pastor, M. (2000). The relations between trunk diameter fluctuations and tree water status in olive trees (Olea europaea L.). Acta Horticulturae 537:293304.Google Scholar
Moriana, A., Moreno, F., Girón, I. F., Conejero, W., Ortuño, M. F., Morales, D., Corell, M. and Torrecillas, A. (2011). Seasonal changes of maximum daily shrinkage reference equations for irrigation scheduling in olive trees: influence of fruit load. Agricultural Water Management 99:121127.Google Scholar
Moriana, A., Orgaz, F., Pastor, M. and Fereres, E. (2003). Yield responses of a mature olive orchard to water deficits. Journal of the American Society of Horticultural Science 128 (3):425431.Google Scholar
Moriana, A., Pérez-López, D., Prieto, M. H., Ramírez-Santa-Pau, M. and Pérez-Rodriguez, J. M. (2012). Mid-day stem water potential as a useful tool for estimating irrigation requirements of olive trees. Agricultural Water Management 112:4354.Google Scholar
Moriana, A., Villalobos, F. J. and Fereres, E. (2002). Stomatal and photosynthetic responses of olive (Olea europaea) leaves to water deficits. Plant, Cell and Environment 25:395405.Google Scholar
Nadezhdina, N., Nadezhdin, V., Ferreia, M. I. and Pitacco, A. (2007). Variability with xylem depth in sap flow in trunks and branches of mature olive trees. Tree Physiology 27:105113.Google Scholar
Nuberg, N. and Yunusa, I. (2003). Olive Water Use and Yield – Monitoring the Relationship. Publication No. 03/048. Adelaide, South, Australia: Rural Industries Research and Development Corporation.Google Scholar
Orgaz, F., Testi, L., Villalobos, F. J. and Fereres, E. (2006). Water requirements of olive orchards – II: determination of crop coefficients for irrigation scheduling. Irrigation Science 24:7484.Google Scholar
Orgaz, F., Villalobos, F. J., Testi, L. and Fereres, E. (2007). A model of mean daily canopy conductance for calculating transpiration of olive canopies. Functional Plant Biology 34:178188.Google Scholar
Pastor, M., García-Vila, M., Soriano, M. A., Vega, V. and Ferere, E. (2008). Productivity of olive orchards in response to tree density. The Journal of Horticultural Science & Biotechnology 82 (4):555562.Google Scholar
Pastor, M., Orgaz, F., Vega, V., Hidalgo, J. and Castro, J. (1998). Programación de riego. In: Junta de Andalucia (Eds.), Informaclones Técnicas, pp. 11–32.Google Scholar
Polverigiani, S., Lodolini, E. M. and Neri, D. (2012). Olive root growth observed in field rhizotron. Acta Horticulturae 949:271278.Google Scholar
Ramos, A. F. and Santos, P. L. (2009). Water use, transpiration, and crop coefficients for olives (cv. Cordovil), grown in orchards in Southern Portugal. Biosystems Engineering 102:321333.Google Scholar
Ramos, A. F. and Santos, F. L. (2010). Yield and olive oil characteristics of a low-density orchard (cv. Cordovil) subjected to different irrigation regimes. Agricultural Water Management 97:363373.Google Scholar
Rapoport, H. F., Pérez-Priego, O., Orgaz, F. and Martins, P. (2011). Water deficit effects during olive tree inflorescence and flower development. Acta Horticulturae 888:157162.CrossRefGoogle Scholar
Rewald, B., Rachmilevich, S., McHue, M. D. and Ephrath, J. E. (2011). Influence of saline drip-irrigation on fine root and sap-flow densities of two mature olive varieties. Environmental and Experimental Botany 72 (2):107114.Google Scholar
Rodriguez-Dominguez, C. M., Ehrenberger, W., Sann, C., Rüger, S., Sukhorukov, V., Martin-Palomo, M. J., Diaz-Espejo, A., Cuevas, M. V., Torres-Ruiz, J. M., Perez-Martin, A., Zimmerman, U. and Fernández, J. E. (2012). Concomitant measurements of stem sap flow and leaf turgor in olive trees using the leaf patch clamp pressure probe. Agricultural Water Management 114:5058.Google Scholar
Rousseaux, M. C., Benedetti, J. P. and Searles, P. S. (2008). Leaf-level responses of olive trees (Olea europaea) to the suspension of irrigation during the winter in an arid region of Argentina. Scientia Horticulturae 115:135141.Google Scholar
Rousseaux, M. C., Figuerola, P. I., Correa-Tedesco, G. and Searles, P. S. (2009). Seasonal variations in sap flow and soil evaporation in an olive (Olea europaea L.) grove under two irrigation regimes in an arid area of Argentina. Agricultural Water Management 96:10371044.Google Scholar
Ruiz-Sanchez, M. C., Domingo, R. and Castel, J. R. (2010). Review: deficit irrigation in fruit trees and vines in Spain. Spanish Journal of Agricultural Research 8 (S2):S5S20.Google Scholar
Salter, P. J. and Goode, J. E. (1967). Crop Responses to Water at Different Stages of Growth. Research Review No. 2. Farnham, UK: Commonwealth Agricultural Bureaux, 246 pp.Google Scholar
Samish, R. M. and Spiegel, P. (1961). The use of irrigation in growing olives for oil production. Israel Journal of Agricultural Research 11:8795.Google Scholar
Santos, F. L., Valverde, P. C., Ramos, A. F., Reis, J. L. and Castanheira, N. L. (2007). Water use and response of a dry-farmed olive orchard recently converted to irrigation. Biosystems Engineering 98:102114.Google Scholar
Santos, F. L., Valverde, P. C., Reis, J. L., Ramos, A. F. and Castanheira, N. L. (2012). Sap flow scaling and crop coefficient of dry-farmed olive orchards converted to irrigation. Acta Horticulturae 949:231236.Google Scholar
Searles, P. S., Saravia, D. A. and Rousseaux, M. C. (2009). Root length density and soil water distribution in drip-irrigated olive orchards in Argentina under arid conditions. Crop and Pasture Science 60 (3):280288.Google Scholar
Sebastiani, L. (2011). Physiological response of olive (Olea europaea L.) to water deficit: an overview. Acta Horticulturae 888:137147.Google Scholar
Sebastiani, L., Michelazzo, C., Morelli, G., Lavini, A., d'Andria, R. and Tognetti, R. (2012). Physiological and productive parameters of olive trees (Olea europaea L.) for diferent irrigation scheduling in central/south Italy. Acta Horticulturae 949:115121.Google Scholar
Terral, J.-F. and Durand, A. (2006). Bio-archaeological evidence of olive tree (Olea europaea L.) irrigation during the Middle ages in Southern France and North Eastern Spain. Journal of Archaeological Science 33:718724.Google Scholar
Testi, L., Villalobos, F. J. and Orgaz, F. (2004). Evapotranspiration of a young irrigated olive orchard in southern Spain. Agricultural and Forest Meteorology 121:118.Google Scholar
Testi, L., Villalobos, F. J., Orgaz, F. and Fereres, E. (2006). Water requirements of olive orchards: 1. Simulation of daily evapotranspiation for scenario analysis. Irrigation Science 24:6976.Google Scholar
Therios, I. (2009). Olives. Wallingford, UK: CABI.Google Scholar
Tognetti, R., d'Andria, R., Lavini, A. and Morelli, G. (2006). The effect of deficit irrigation on crop yield and vegetative development of Olea euopaea L. (cvs. Frantoio and Leccino). European Journal of Agronomy 25:356364.Google Scholar
Tognetti, R., d'Andria, R., Morelli, G., Calandrelli, D. and Fragnito, F. (2004). Irrigation effects on daily and seasonal variations of trunk sap flow and leaf water relations in olive trees. Plant and Soil 263:249264.Google Scholar
Torres-Ruiz, J. M., Fernández, J. E., Diaz-Espejo, A., Martin-Polemo, M. J., Morales-Sillero, A., Muriel, J. L. and Romero, R. (2011). Stomatal control and hydraulic conductivity in ‘Manzanilla’ olive trees under different water regimes. Acta Horticulturae 888:149155.Google Scholar
Tubeileh, A., Bruggeman, A. and Turkelboom, F. (2009). Effect of water harvesting on growth of young olive trees in degraded Syrian dryland. Environment, Development and Sustainability 11:10731090.Google Scholar
Villalobos, F. J., Orgaz, F., Testi, L. and Fereres, E. (2000). Measurement and modelling of evapotranspiration of olive (Olea europaea L.) orchards. European Journal of Agronomy 13:155163.Google Scholar
Villalobos, F. J., Perez-Priego, O., Testi, L., Morales, A. and Orgaz, F. (2012). Effects of waters supply on carbon and water exchange of olive trees. European Journal of Agronomy 40:17.Google Scholar
Wahbi, S., Wakrim, R., Aganchich, B., Tahi, H. and Serraj, R. (2005). Effects of partial root zone drying (PRD) on adult olive tree (Olea europaea) in field conditions under arid climate. I. Physiological and agronomic responses. Agriculture, Ecosystems and Environment 106:289301.Google Scholar
Wheeler, R., Grattan, S., Goldhamer, D., Schwankl, L. and Vossen, P. (2008). Olives: Irrigation Water Management of Olives under Drought Conditions. Davis, CA: UC Drought Management, University of California, Agriculture and Natural Resources, 6 pp.Google Scholar