Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-26T01:13:06.769Z Has data issue: false hasContentIssue false

IMMEDIATE AND RESIDUAL EFFECTS OF LIME AND PHOSPHORUS FERTILIZER ON SOIL ACIDITY AND MAIZE PRODUCTION IN WESTERN KENYA

Published online by Cambridge University Press:  17 May 2013

P. O. KISINYO*
Affiliation:
University of Eldoret, P.O. Box 1125-30100, Eldoret, Kenya Rongo University College, P.O. Box 103-40404, Rongo, Kenya
C. O. OTHIENO
Affiliation:
University of Eldoret, P.O. Box 1125-30100, Eldoret, Kenya
S. O. GUDU
Affiliation:
Rongo University College, P.O. Box 103-40404, Rongo, Kenya Moi University, P.O. Box 3900-30100, Eldoret, Kenya
J. R. OKALEBO
Affiliation:
University of Eldoret, P.O. Box 1125-30100, Eldoret, Kenya
P. A. OPALA
Affiliation:
Maseno University, Private Bag, Maseno, Kenya
W. K. NG'ETICH
Affiliation:
University of Eldoret, P.O. Box 1125-30100, Eldoret, Kenya
R. O. NYAMBATI
Affiliation:
Kenya Forestry Research InstituteP.O. Box 5199-40100, Kisumu, Kenya
E. O. OUMA
Affiliation:
University of Eldoret, P.O. Box 1125-30100, Eldoret, Kenya
J. J. AGALO
Affiliation:
Moi University, P.O. Box 3900-30100, Eldoret, Kenya
S. J. KEBENEY
Affiliation:
University of Eldoret, P.O. Box 1125-30100, Eldoret, Kenya
E. J. TOO
Affiliation:
University of Eldoret, P.O. Box 1125-30100, Eldoret, Kenya
J. A. KISINYO
Affiliation:
University of Eldoret, P.O. Box 1125-30100, Eldoret, Kenya
W. R. OPILE
Affiliation:
University of Eldoret, P.O. Box 1125-30100, Eldoret, Kenya
*
§Corresponding author. Email: kisinyopeter@yahoo.com/dean-agriculture@ruc.ac.ke

Summary

Soil acidity and phosphorus (P) deficiency are some of the major causes of low maize yields in Kenya. This study determined the immediate and residual effects of lime and P fertilizer on soil pH, exchangeable aluminium (Al), available P, maize grain yield, agronomic P use and P fertilizer recovery efficiencies on a western Kenya acid soil. The treatments were: P fertilizer (0, 26 and 52 kg P ha−1 as triple super phosphate) and lime (0, 2, 4 and 6 tons lime ha−1) applied once at the beginning of the study. A burnt liming material with 92.5% calcium carbonate equivalent was used. Soil samples were analysed prior to and after treatment application. The site had low soil pH–H2O (4.9), available P (2.3 mg kg−1), total N (0.17%), high Al (2.0 cmol kg−1 exchangeable Al and 29% Al saturation). Lime reduced soil pH and exchangeable Al, leading to increased soil available P. Lime at 2, 4 and 6 tons ha−1 maintained soil pH ≥ 5.5 for 2, 3 and 4 years, respectively. The study observed that the recommended P fertilizer rate (26 kg P ha−1) for maize production in Kenya was inadequate to raise soil available P to the critical level (≥10 mg P kg−1 soil bicarbonate extractable P) required for healthy maize growth. To maintain soil available P at the critical level where 52 kg P ha−1 and combined 52 kg P ha−1 + 4 tons lime ha−1 were applied, it would be necessary to reapply the same P fertilizer rate after every one and two cropping seasons, respectively. The 4-year mean grain yield increments were 0.17, 0.34, 0.50, 0.58 and 1.17 tons ha−1 due to 2, 4, 6 tons lime ha−1, 26 kg P and 52 kg P ha−1, respectively. Both agronomic P use and P fertilizer recovery efficiencies increased with increasing rates of lime and decreased with increasing rates of P fertilizer. Therefore, combined applications of both lime and P fertilizer are important for enhancing maize production on P-deficient acid soils in western Kenya.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abruna, F., Vicente-Chandler, J. and Pearson, R. W. (1964). Effects of lime on yield and composition of heavily fertilized grasses and soil properties under humid tropical conditions. Soil Science Society of America Proceedings 28:657661.CrossRefGoogle Scholar
Ayaga, G. O. (2003). Maize yield trends in Kenya in the last 20 years. A keynote paper. In Proceedings of a Workshop on Declining Maize Yield Trends in Trans Nzoia District Conference, Kitale, Kenya. May 22–23, Moi University, Eldoret, Kenya, 7–13.Google Scholar
Baligar, V., Fageria, N. K. and He, Z. L. (2001). Nutrient use efficiency in plants. Communication in Soil Science and Plant Analysis 32:921950.Google Scholar
Buresh, R. J., Smithson, P. C. and Hellums, D. T. (1997). Building soil phosphorus capital in Africa. In Replenishing Soil Fertility in Africa, 111149. (Eds Buresh, R. J., Sanchez, P. A. and Calhoun, F.). Madison, WI: Soil Science Society of America, Special Publication No. 51.Google Scholar
Cochrane, T. T., Salinas, J. G. and Sanchez, P. A. (1980). An equation for liming acid mineral soils to compensate crop aluminium tolerance. Tropical Agriculture (Trinidad) 57:3340.Google Scholar
De Freistas, L. M. M. and van Raij, B. (1975). Residual effect of liming sandy clay loam latosols. In Soil Management in Tropical America, 300307 (Eds Barnemizsa, E. and Alvarado, A.). Raleigh, UK: North Carolina State University.Google Scholar
Dobermman, A. (2005). Nitrogen use efficacy-state of the art. IFA International Workshop on Enhanced Efficiency Fertilizers, Frankfurt, Germany, June 28–30. Available at http://soilfertility.unl.edu/Matrials%20to%20included/nitrogen%20use520state%20of%20the%20art_Dobermman.pdf [Accessed 11 September 2010].Google Scholar
Eswaran, H., Reich, P. and Beigroth, F. (1997). Global distribution of soils with acidity. In Plant Soil Interactions at Low, 159164 (Ed Monitz, A. C.). Campinas, Brazil: Brazilian Soil Science Society.Google Scholar
GenStat (2010). The GenStat Teaching Edition. GenStat Release 7.22 TE”. Copyright 2008. Hertfordshire, UK: VSN International Ltd.Google Scholar
Giller, K. E., Cadisch, G. and Palm, C. (2002). The North-South Divide! Organic wastes or resources for nutrient management? Agronomie 22:645653.Google Scholar
Gudu, S. O., Kisinyo, P. O., Makatiani, E. T., Odee, D. W., Esegu, J. F. O., Chamshama, S. A. O., Othieno, C. O., Okalebo, J. R., Osiyo, R. J. and Owuoche, J. O. (2009). Screening of Sesbania for tolerance to aluminum toxicity and symbiotic effectiveness with acid tolerant Rhizobia strains in western Kenya acid soil. Experimental Agriculture 45:417427.CrossRefGoogle Scholar
Gudu, S. O., Okalebo, J. R., Othieno, C. O., Obura, P. A., Ligeyo, D. O., Schulze, D. and Johnson, C. (2005). Response of maize to nitrogen, phosphorus and lime on acid soils of western Kenya. In Proceedings of the 7th African Crop Science Conference, Entebbe, Uganda, December 5–9, 11091115.Google Scholar
Halvin, L., Tisdale, S. L., Beaton, J. D. and Nelson, W. L. (2006). Soil Fertility and Fertilizers: An Introductory to Nutrient Management, 7th edn. New Jersey: Pearson Education.Google Scholar
Hussein, A. H. A. (2009). Phosphorus use efficiency by two varieties of corn at different phosphorus fertilizer rates. Research Journal of Applied Science 4:8593.Google Scholar
Jaetzold, R. and Schmidt, H. (eds). (1983). Farm Management Handbook of Kenya, Vol. IIA Western Kenya and Vol. II B (Central Kenya): Natural Conditions and Farm Management Information. Nairobi, Kenya: Ministry of Agriculture/GAT Nairobi and GTZ/Eschborn.Google Scholar
Jama, B., Swinkels, R. A. and Buresh, R. J. (1997). Agronomic and economic evaluation of organic and inorganic sources of phosphorus in Western Kenya. Agronomy Journal 89:597604.Google Scholar
Kanyanjua, S. M., Ireri, L., Wambua, S. and Nandwa, S. M. (2002). Acid soils in Kenya: constraints and remedial options. KARI Technical Note No. 11, June 2002. KARI Headquarters, Nairobi, Kenya.Google Scholar
Keerthisinghe, G., Zapata, F., Chalk, P. and Hocking, P. (2001). Integrated approaches for improved P nutrition of plants in tropical acid Soils. In Plant Nutrition-Food Security and Sustainability of Agro-Ecosystems, 974975 (Eds Horst, W. J., Schenk, M. K., Bürkert, A., Claaseen, N., Flessa, H., Frommer, W. B., Goldbach, H., Olfs, H.-W., Römheld, V., Sattelmacher, B., Schmidhalter, U., Schubert, S., Wirén, N. V. and Wittenmayer, L.). Dordrecht: Springer.Google Scholar
Kenya Agricultural Research Institute. (1994). Fertilizer Use Recommendations. Vol. 1–22. Fertilizer Use Recommendations Project. Nairobi, Kenya: Kenya Agricultural Research Institute.Google Scholar
Kisinyo, P. O. (2011). Constraints of soil acidity and nutrient depletion on maize (Zea mays L.) production in Kenya. PhD thesis, Moi University, Kenya.Google Scholar
Landon, J. R. (1984). Booker Tropical Soils Manual: A Handbook for Soil Survey and Agricultural Land Evaluation in the Tropics and Subtropics. New York: John Wiley & Sons.Google Scholar
Landon, J. R. (1991). Booker Tropical Soil Manual: A Handbook for Soil Survey and Agricultural Land Evaluation in the Tropics and Subtropics. Harlow: Longman Scientific and Technical.Google Scholar
Ligeyo, D. O. (2007). Genetic analysis of maize (Zea mays L.) tolerance to aluminium toxicity and low phosphorus stress and development of synthetics for use in acid soils of western Kenya. PhD thesis, Moi University, Kenya.Google Scholar
Mahilum, B. C., Fox, R. L. and Silva, J. A. (1970). Residual effects of liming volcanic ash soils in the tropics. Soil Science 109:102109.Google Scholar
Mengel, B. D. and Kirkby, E. A. (1982). Principles of Plant Nutrition, 3rd edn. Berne: International Potash Institute.Google Scholar
Moody, P. W., Aitken, R. and Dickson, T. (1998). Field amelioration of acid soils in south–east Queensland III. Relationships of maize yield response to lime amended soil properties. Australian Journal of Agricultural Research 49:649656.Google Scholar
Muhammad, L. and Underwood, E. (2004). The maize agricultural context in Kenya. In Risk Assessment of Genetically Modified Organisms: A Case Study of Bt Maize Kenya, 2156 (Eds Andow, D. A. and Hilbeck, A.). Wallingford, UK: CABI.Google Scholar
Nekesa, A. O. (2007). Effects of Minjingu phosphate rock and agricultural lime in relation to maize, groundnut and soybean yield on acid soils of western Kenya. MSc thesis, Moi University, Kenya.Google Scholar
Obura, P. A. (2008). Effects of soil properties on bioavailability of aluminium and phosphorus in selected Kenyan and Brazilian soils. PhD thesis, Purdue University, USA.Google Scholar
Obura, P. A., Okalebo, J. R., Othieno, C. O. and Woomer, P. L. (2001). The effect of prep-pac product on maize-soybean intercrop in the acid soils of western Kenya. In African Crop Science Conference Proceedings, Lagos, Nigeria. October 22–26, 889896.Google Scholar
Okalebo, J. R., Gathua, K. W. and Woomer, P. L. (2002). Laboratory Methods of Soil Analysis: A Working Manual, 2nd edn. Nairobi, Kenya: TSBR-CIAT and SACRED Africa.Google Scholar
Okalebo, J. R., Othieno, C. O., Woomer, P. L., Karanja, N. K., Sesmoka, J. R. M., Bekunda, M. A., Mugendi, D. N., Muasya, R. M., Bationo, A. and Mukhwana, E. J. (2006). Available technologies to replenish soil fertility in East Africa. Nutrient Cycling Agroecosystems 76:153170.Google Scholar
Opala, P., Okalebo, J. R., Othieno, C. O. and Kisinyo, P. (2010). Effect of organic and inorganic phosphorus sources on maize yields in an acid soil in western Kenya. Nutrient Cycling Agroecosystems 86:317329.Google Scholar
Qureshi, J. N. (1991). The cumulative effects of N-P fertilizers, manure and crop residues on maize and bean yields and some soil chemical properties at Kabete. Recent advances in KARI's research programmes. In Proceedings of the 2nd KARI Annual Scientific Conference, Kenya Agricultural Research Institute, Nairobi, Kenya, September 5–7, 1990, 160167.Google Scholar
Sanchez, P. A. (1976). Properties and Management of Soils in the Tropics. New York: John Wiley & Sons.Google Scholar
Sanchez, P. A., Shepherd, K. D., Soule, M. J., Place, F. M., Buresh, R. J., Izac, A-M. N., Mokwunye, A. U., Kwesiga, F. R., Nderitu, C. G. and Woomer, P. L. (1997). Soil fertility management in Africa: an investment in natural resource. In Replenishing Soil Fertility in Africa, 146 (Eds Buresh, R. J., Sanchez, P. A. and Calhoun, F.). Madison, WI: Soil Science Society of America, Special Publication No. 51.Google Scholar
Schulze, D. and Santana, D. (2003). A report on laboratory analysis of soils from acid soils-maize growing areas of central and western Kenya, McKnight Foundation, USA, Project. First Year Progress Report. p. 107. (EMBRAPA, Purdue and Cornell Universities (USA) and Moi University (Kenya).Google Scholar
Sierra, J., Noel, C., Dufour, L., Ozier-Lafontaine, H., Welcker, C. and Dsfontaines, L. (2003). Mineral nutrition and growth of tropical maize as affected by the soil acidity. Plant Soil 252:215226.CrossRefGoogle Scholar
Smith, M. J. (1981). Soil Mechanics. 4th edn. England: Longman Scientific and Technical.Google Scholar
Sombroek, W. G., Braun, H. M. H. and van de, Pouw. (1982). Exploratory soil map and agro-climatic zone map of Kenya. Scale 1:1000, 000. Exploratory soil survey report no. E1. Kenya Soil Survey, Nairobi, Kenya.Google Scholar
The, C., Calba, H., Zonkeng, C., Ngonkeu, E. L. M. and Adetimirin, V. O. (2006). Response of maize grain yield to changes in acid soil characteristics after soil amendment. Plant Soil 284:4557.Google Scholar
Tisdale, S. L., Nelson, W. L. and Beaton, J. D. (1990). Soil Fertility and Fertilizers. New York: Macmillan.Google Scholar
van Straaten, P. (2007). Agro Geology: The Use of Rocks for Crops, 440 pp. Cambridge, Canada: EnviroquestGoogle Scholar
Weisz, R., White, J. G., Knox, B. and Reed, L. (2003). Long term-variable rate lime and P application for piedmont no-till field crops. Precession Agriculture 4:311330.Google Scholar