Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T03:26:37.034Z Has data issue: false hasContentIssue false

Zircon geochronology of anatectic melts and residues from a highgrade pelitic assemblage at Ihosy, southern Madagascar: evidence for Pan-African granulite metamorphism

Published online by Cambridge University Press:  01 May 2009

A. Kröner
Affiliation:
Institut für Geowissenschaften, Universität Mainz, 55099 Mainz, Germany
I. Braun
Affiliation:
Mineralogisch-Petrologisches Institut, Universität Bonn, Poppelsdorfer Schloβ, 53115 Bonn, Germany
P. Jaeckel
Affiliation:
Institut für Geowissenschaften, Universität Mainz, 55099 Mainz, Germany Max-Planck-Institut für Chemie, Postfach 3060, 55060 Mainz, Germany

Abstract

We report U—Pb and 207Pb/206Pb zircon ages for a granulite facies gneiss assemblage exposed in a large quarry at Ihosy, southern Madagascar. The granulites are derived from pelitic to arkosic sediments and attained equilibrium conditions at 650–700°C and 4–5 kbar. Higher P—T conditions of 750–800°C and 6 kbar in the presence of low water activities have led to dehydration melting processes. The formation of granitic melts, which (partly) moved away from their source region, intruded into upper parts of the metapelitic gneisses as small granitic veins and left behind granulitic garnet-cordierite-quartz bearing rocks. Detrital zircons in a sample of metapelite and a sample of quartzofeldspathic gneiss yielded ages between ˜720 and ˜1855 Ma, suggesting a chronologically heterogeneous source region and a depositional age of less than ˜720 Ma for these rocks. High-grade metamorphism and anatexis are documented by zircon ages between 526 ±34 and 557 ±2 Ma with a mean age of about 550 Ma. The broad lithologies, metamorphic grades and ages recorded in the Ihosy rocks are similar to those in the Wanni Complex of northwestern Sri Lanka and in high-grade assemblages of southernmost India and support the contention that all these terrains were part of the Mozambique belt which formed as a result of collision of East and West Gondwana in latest Precambrian time.

Type
Articles
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andriamarofahatra, J., & De La Boisse, H., 1986. Premières datations sur zircon du mètamorphisme granulitique dans le Sud-Est de Madagascar. Ilème Réunion des Sciences de la Terre, Clermont-Ferrand, 3 pp.Google Scholar
Andriamarofahatra, J., de la Boisse, H., & Nicollet, C., 1990. Datation U—Pb sur monazites et zircons du dernier èpisode tectono-métamorphique granulitique majeur dans le Sud-Est de Madagascar. Comptes Rendus de la Académi de Sciences, Paris 310, Série II, 1643–8.Google Scholar
Baur, N., Kröner, A., Todt, W., Liew, T. C., & Hofmann, A. W., 1991. U—Pb isotopic systematics of zircons from prograde and retrograde transition zones in high-grade orthogneisses, Sri Lanka. Journal of Geology, Chicago 99, 527–45.CrossRefGoogle Scholar
Berman, R. G., Brown, T. H., & Perkins, E. H., 1987. GEO-CALC: software for calculation and display of temperature—pressure—composition phase diagrams. American Mineralogist 72, 861–2.Google Scholar
Berman, R. G., 1988. Internally consistent thermodynamic data for stoichiometric minerals in the system Na2O—K2O—CaO—MgO—FeO—Fe2O3—Al2O3—TiO2—H2—CO2. Journal of Petrology 22, 445522.CrossRefGoogle Scholar
Besairie, H., 1964. 1:1,000,000 geological map of Madagascar (3 sheets). Service géologique du Madagascar, Tananarive.Google Scholar
Besairie, H., 1967. The Precambrian of Madagascar. In The Precambrian, vol. 3 (ed. Rankama, K.), pp. 133–42. London: Interscience Publishers.Google Scholar
Besairie, H., 19681971. Description géologique du massif ancien de Madagascar. Document de la Bureau Géologique, Tananarive, 177(a—f).Google Scholar
Besairie, H., 1973. La géologie globale et ses applications à l' océan indien et à Madagascar. Document de la Bureau Géologique, Tananarive, 186, 30 pp.Google Scholar
Braun, I., & Hoernes, S., 1995. Oxygen isotope investigations on migmatitic metapelites from southern Madagascar. Terra Abstracts 7, 142.Google Scholar
Caen-Vachette, M., 1977. Géochronologie du Précambrien malgache. Bulletin de l' Academie Malgache 55, 251–89.Google Scholar
Caen-Vachette, M., 1979. Le Précambrien de Madagascar. Radiochronométrie par isochrones Rb/Sr sur roches totales. Revue de Géologique dynamique Géographe physique 21, 331–8.Google Scholar
Cahen, L., Snelling, N. J., Delhal, J., & Vail, J. R., 1984. The geochronology and evolution of Africa. Oxford: Clarendon Press, 512 pp.Google Scholar
Chappell, B. W., 1984. Source rocks of I- and S-type granites in the Lachlan Fold Belt, southeastern Australia. Philosophical Transactions of the Royal Society Academy, London A310, 693707.Google Scholar
Choudhary, A. K., Harris, N. B. W., van Calsteren, P., & Hawkesworth, C. J., 1992. Pan-African chamockite formation in Kerala, South India. Geological Magazine 129, 257–64.CrossRefGoogle Scholar
Hansen, E. C., Hickman, M. H., Grant, N. K., & Newton, R. C., 1985. Pan-African age of Peninsular Gneiss, near Madurai, South India. EOS, Transactions of the American Geophysical Union 66, 419–20.Google Scholar
Holtz, F., & Johannes, W., 1991. Genesis of peraluminous granites: I. Experimental investigations of melt compositions at 3 and 5 Kb and various H2O activities. Journal of Petrology 32, 935–58.CrossRefGoogle Scholar
Höltz, S., Hofmann, A. W., Todt, W., & Köhler, H., 1994. U/Pb geochronology of the Sri Lankan basement. Precambrian Research 66, 123–49.Google Scholar
Hottin, G., 1976. Présentation et essai d'interprétation du Précambrien de Madagascar. Bulletin du Bureau de Recherche Geologogique et Miniere 4, 117–53.Google Scholar
Kober, B., 1986. Whole-grain evaporation for 207Pb/206Pb-ageinvestigations on single zircons unsing a double-filament thermal ion source. Contributions to Mineralogy and Petrology 93, 482–90.CrossRefGoogle Scholar
Kober, B., 1987. Single-zircon evaporation combined with Pb+ emitter-bedding for 207Pb/206Pb-age investigations using thermal ion mass spectrometry, and implications to zirconology. Contributions to Mineralogy and Petrology 96, 6371.CrossRefGoogle Scholar
Kriegsman, L., 1993. Geodynamic evolution of the Pan-African lower crust in Sri Lanka. Geologica Ultraietina, Univ. Utrecht, The Netherlands 114, 207 pp.Google Scholar
Kröner, A., 1980. Pan-African crustal evolution. Episodes 1980, 38.CrossRefGoogle Scholar
Kröner, A., 1991. African linkage of Precambrian Sri Lanka. Geologische Rundschau 80, 429–40.CrossRefGoogle Scholar
Kröner, A., 1993. The Pan African belt of northeastern and eastern Africa, Madagascar, southern India, Sri Lanka and East Antarctica: Terrane amalgamation during formation of the Gondwana supercontinent. In Geoscientific Research in northeast Africa (eds Thorweihe, U. and Schandelmeier, H.), pp. 39. Rotterdam: Balkema.Google Scholar
Kröner, A., & Todt, W., 1988. Single zircon dating constraining the maximum age of the Barberton greenstone belt, southern Africa. Journal of Geophysical Research 93, 15329–337.CrossRefGoogle Scholar
Kröner, A., & Williams, I. S., 1993. Age of metamorphism in the high-grade rocks of Sri Lanka. Journal of Geology 101, 513–21.CrossRefGoogle Scholar
Kröner, A., Byerly, C. R., & Lowe, D. R., 1991. Chronology of early Archaean granite-greenstone evolution in the Barberton Mountain Land, South Africa, based on precise dating by single zircon evaporation. Earth and Planetary Science Letters 103, 4154.CrossRefGoogle Scholar
Kröner, A., Jaeckel, P., & Williams, I. S., 1994. Pb-loss patterns in zircons from a high-grade metamorphic terrain as revealed by different dating methods: U—Pb and Pb—Pb ages for igneous and metamorphic zircons from northern Sri Lanka. Precambrian Research 66, 151–81.CrossRefGoogle Scholar
Lancelot, J., Vitrac, A., & Allègre, C. J., 1976. Uranium and lead isotopic dating with grain-by-grain zircon analysis: A study of complex geological history with a single rock. Earth and Planetary Science Letters 29, 357–66.CrossRefGoogle Scholar
Le, Breton N., & Thompson, A. B., 1988. Fluid-absent (dehydration) melting of biotite in metapelites in the early stages of crustal anatexis. Contributions to Mineralogy and Petrology 99, 226257.Google Scholar
Maboko, M. A. H., Boelrijk, N. A. I. M., Priem, H. N. A., & Verdurmen, E. A. Th., 1985. Zircon U—Pb and biotite Rb—Sr dating of the Wami River granulites, eastern granulites, Tanzania: evidence for approximately 715 Ma old granulite-facies metamorphism and final Pan-African cooling approximately 475 Ma ago. Precambrian Research 30, 361–78.CrossRefGoogle Scholar
Miller, C. F., 1985. Are strongly peraluminous magmas derived from pelitic sedimentary sources? Journal of Geology 93, 673–89.CrossRefGoogle Scholar
Möller, A., Mezger, K., & Schenk, V., 1994. U—Pb dating of metamorphic minerals: age of metamorphism and cooling history of Panafrikan granulites and early Proterozoic eclogites in Tanzania. Beiheft zum European Journal of Mineralogy 6, 182.Google Scholar
Muhongo, S., & Lenoir, J.-L., 1994. Pan-African granulitefacies metamorphism in the Mozambique belt of Tanzania: U—Pb zircon geochronology. Journal of the Geological Society, London 151, 343–7.CrossRefGoogle Scholar
Nicollet, C., 1985. Les gneiss rubanés à Cordiérite et Grenat d'lhosy: un marqueur thermo-barométrique dans le Sud de Madagascar. Precambrian Research 28, 175–85.CrossRefGoogle Scholar
Nicollet, C., 1990. Crustal evolution of the granulites of Madagascar. In Granulites and crustal differentiation (eds Vielzeuf, D. and Vidal, Ph.), pp. 291310. NATO ASI Series C, vol. 311. Doordrecht: Kluwer Acadademic Publishers.CrossRefGoogle Scholar
Nicollet, C., 1995. E-Probe monazite dating of the uplift of the Precambrian in the S of Madagascar. Terra Abstracts 7, 124.Google Scholar
Paquette, J.-L., Nédélec, A., Moine, B., & Rakotondrazafy, M., 1994. U—Pb, single zircon Pb-evaporation and Sm—Nd isotopic study of a granulitic domain in S.E. Madagascar. Journal of Geology 102, 523–38.CrossRefGoogle Scholar
Pidgeon, R. T., Furfaro, D., Kennedy, A., & Van Bronswjk, W., 1994. Calibration of the CZ3 zircon standard for the Curtin SHRIMP II. United States Geological Survey Circular 1107, 251.Google Scholar
Pohl, J. R., & Emmermann, R., 1991. Chemical composition of the Sri Lankan Precambrian basement. In The crystalline crust of Sri Lanka, Part I. Summary of Research of the German—Sri Lankan Consortium (ed. Kröner, A.), pp. 94124. Geological Survey Deptartment of Sri Lanka, Professional Paper no. 5.Google Scholar
Prame, W. K. B. N., & Pohl, J., 1994. Evidence for prograde metamorphic evolution of Sri Lankan pelitic granulites, and implications for the development of continental crust. Precambrian Research 66, 223–44.Google Scholar
Raase, P., & Schenk, V., 1994. Petrology of granulite-facies metapelites of the Highland Complex, Sri Lanka: implications for the metamorphic zonation and the P—T path. Precambrian Research 66, 265–94.CrossRefGoogle Scholar
Santosh, M., & Yoshida, M., 1986. Charnockite “in the breaking”: evidences from the Trivandrum region, South Kerala. Journal of the Geological Society of India 28, 306–10.Google Scholar
Santosh, M., Kagami, H., Yoshida, M, & Nanda-Kumar, V., 1992. Pan-African chamockite formation in East Gondwana: geochronologic (Sm—Nd and Rb—Sr) and petrogenetic constraints. Bulletin of the Indian Geological Association 25, 110.Google Scholar
Stacey, J. I., & Kramers, J. D., 1975. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth and Planetary Science Letters 26, 207–21.CrossRefGoogle Scholar
Taylor, S. R., & McLennan, S. M., 1985. The continental crust: its composition and evolution. Oxford: Blackwell Scientific Publications, 167 pp.Google Scholar
Unnikrishnan-Warrier, C., Yoshida, M., Kagami, H., & Santosh, M., 1993. Geochronological constraints on granulite formation in southern India: implications for East Gondwana reassembly. Journal of Geosciences of Osaka City University, Japan 36, 109–21.Google Scholar
Vielzeuf, D., & Holloway, J. R., 1988. Experimental determination of the fluid-absent melting relations in the pelitic system. Consequences for crustal differentiation. Contributions to Mineralogy and Petrology 98, 257–76.CrossRefGoogle Scholar
Wendt, J. I., & Todt, W., 1991. A vapour digestion method for dating single zircons by direct measurement of U and Pb without chemical separation. Terra Abstracts 3, 507–8.Google Scholar
Windley, B. F., Razafiniparany, A., Razakamanana, T., & Ackermand, D., 1994. The tectonic framework of the Precambrian of Madagascar and its Gondwana connections: a review and appraisal. Geologische Rundschau 83, 642–59.CrossRefGoogle Scholar
York, D., 1969. Least squares fitting of a straight line with correlated errors. Earth and Planetary Science Letters 5, 320–4.CrossRefGoogle Scholar
Yoshida, M., Funaki, M., & Vitanage, P. W., 1992. Proterozoic to Mesozoic East Gondwana: the juxtaposition of India-Sri Lanka and Antarctica. Tectonics 11, 381–91.CrossRefGoogle Scholar