Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-23T16:06:52.379Z Has data issue: false hasContentIssue false

Mesoproterozoic sulphidic ocean, delayed oxygenation and evolution of early life: sulphur isotope clues from Indian Proterozoic basins

Published online by Cambridge University Press:  09 September 2009

A. SARKAR*
Affiliation:
Department of Geology & Geophysics, Indian Institute of Technology, Kharagpur 721 302, India
P. P. CHAKRABORTY
Affiliation:
Rajiv Gandhi Institute of Petroleum Technology, Rae Bareli 229 316, India
B. MISHRA
Affiliation:
Department of Geology & Geophysics, Indian Institute of Technology, Kharagpur 721 302, India
M. K. BERA
Affiliation:
Department of Geology & Geophysics, Indian Institute of Technology, Kharagpur 721 302, India
P. SANYAL
Affiliation:
Department of Geology & Geophysics, Indian Institute of Technology, Kharagpur 721 302, India
S. PAUL
Affiliation:
Frontier Basins, ONGC limited, Dehradun 248195, India
*
Author for correspondence: anindya@gg.iitkgp.ernet.in

Abstract

Analyses of sulphur isotope compositions in sedimentary pyrites from the Vindhyan, Chattisgarh and Cuddapah basins show heavy δ34S (> +25 ‰) values during the Mesoproterozoic. The data provide evidence in support of a hypothesized global Proterozoic sulphidic anoxic ocean where very low concentrations of marine sulphate, bacterially reduced in closed systems, produced δ34S values in pyrites similar to or even heavier than marine sulphate. The extreme environmental conditions induced by these anoxic oceans could have been responsible for the delayed oxygenation of the biosphere and retarded evolution of multicellular life.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anbar, A. D. & Knoll, A. H. 2002. Proterozoic Ocean Chemistry and Evolution: A Bioinorganic Bridge? Science 297, 1137–42.CrossRefGoogle ScholarPubMed
Arnold, G. L., Anbar, A. D., Barling, J. & Lyons, T. W. 2004. Molybdenum isotope evidence for widespread anoxia in mid-Proterozoic oceans. Science 304, 8790.CrossRefGoogle ScholarPubMed
Azmy, K., Veizer, J., Misi, R., Olivia, T. De & Dardenne, M. 2001. Isotope stratigraphy of the Neoproterozoic carbonate of Vazante Formation Saõ Francisco Basin, Brazil. Precambrian Research 112, 303–29.CrossRefGoogle Scholar
Banerjee, I. 1982. The Vindhyan tidal sea. In Geology of Vindhyachal (eds Valdiya, K. S., Bhatia, S. B. & Gaur, V. K.), pp. 80–7. New Delhi: Hindustan Publishing Corporation Press.Google Scholar
Banerjee, S., Dutta, S., Paikaray, S. & Mann, U. 2006. Stratigraphy, sedimentology and bulk organic geochemistry of black shales from the Proterozoic Vindhyan Supergroup (central India). Journal of Earth System Science 115, 3747.CrossRefGoogle Scholar
Bartley, J. K. & Kah, L. C. 2004. Marine carbon reservoir, Corg–Ccarb coupling, and the evolution of the Proterozoic carbon cycle. Geology 32, 129–32.CrossRefGoogle Scholar
Bartley, J. K., Knoll, A. H., Grotzinger, J. P. & Sergeev, V. N. 2000. Lithification and fabric genesis in precipitated stromatolites and associated peritidal carbonates, Mesoproterozoic Billyakh Group, Siberia. In Carbonate Sedimentation and Diagenesis in the Evolving Precambrian World (eds Grotzinger, J. P. & James, N. P.), pp. 5973. SEPM Special Publication no. 67. SEPM (Society for Sedimentary Geology).CrossRefGoogle Scholar
Basu, H., Gangadharan, G. R., Kumar, S., Sharma, U. P., Rai, A. K. & Chaki, A. 2007. Sedimentary Facies of Gulcheru Quartzite in the Southwestern Part of the Cuddapah Basin and their Implication in Deciphering the Depositional Environment. Journal of Geological Society of India 69, 347–58.Google Scholar
Bengtson, S., Belivanova, V., Rasmussen, B. & Whitehouse, M. 2009. The controversial “Cambrian” fossils of the Vindhyan are real but more than a billion years older. Proceedings of the National Academy of Sciences 106, 7729–34.CrossRefGoogle ScholarPubMed
Berner, R. A. 1984. Sedimentary pyrite formation: an update. Geochimica et Cosmochimica Acta 48, 605–15.CrossRefGoogle Scholar
Bhaskar Rao, Y. J., Pantulu, G. V. C., Damodara Reddy, V. & Gopalan, K. 1995. Time of early sedimentation and volcanism in the Proterozoic Cuddapah basin, south India: evidence from the Rb–Sr age of the Pulivendla mafic sill. Geological Society of India Memoir 33, 329–38.Google Scholar
Bose, P. K. & Chaudhuri, A. 1990. Tide versus storm in Epeiric coastal deposition: Two Proterozoic sequences, India. Geological Journal 25, 81101.CrossRefGoogle Scholar
Bose, P. K., Sarkar, S., Chakrabarty, S. & Banerjee, S. 2001. Overview of the Meso- to Neoproterozoic evolution of the Vindhyan basin, central India. Sedimentary Geology 141, 395419.CrossRefGoogle Scholar
Bottrell, S. H. & Newton, R. J. 2006. Reconstruction of changes in global sulfur cycling from marine sulfate isotopes. Earth Science Reviews 75, 5983.CrossRefGoogle Scholar
Brasier, M. D. & Lindsay, J. F. 1998. A billion years of environmental stability and the emergence of eukaryotes: New data from northern Australia. Geology 26, 555–8.2.3.CO;2>CrossRefGoogle ScholarPubMed
Brocks, J. J., Love, G. D., Summons, R. E., Knoll, A. H., Logan, G. A. & Bowden, S. A. 2005. Biomarker evidence for green and purple sulphur bacteria in a stratified Palaeoproterozoic sea. Nature 437, 866–70.CrossRefGoogle Scholar
Buick, R. 2007. Did the Proterozoic ‘Canfield Ocean’ cause a laughing gas greenhouse? Geobiology 5, 97100.CrossRefGoogle Scholar
Burns, S. J. & Matter, A. 1993. Carbon isotopic record of the latest Proterozoic from Oman. Eclogae Geologicae Helvetiae 86, 595607.Google Scholar
Canfield, D. E. 1998. A new model for Proterozoic ocean chemistry. Nature 396, 450–3.CrossRefGoogle Scholar
Canfield, D. E. 2004. The evolution of the earth-surface sulphur reservoir. American Journal of Science 304, 839–61.CrossRefGoogle Scholar
Canfield, D. E. & Raiswell, R. 1999. The evolution of the sulphur cycle. American Journal of Science 299, 697723.CrossRefGoogle Scholar
Canfield, D. E. & Teske, A. 1996. Late Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulphur-isotope studies. Nature 382, 127–32.CrossRefGoogle ScholarPubMed
Chakraborty, C. 2006. Gutter casts from the Proterozoic Bijaygarh Shale Formation, India: Their implication for storm-induced circulation in shelf settings. Geological Journal 30, 6978.CrossRefGoogle Scholar
Chakraborty, C. & Bose, P. K. 1990. Internal structures of sandwaves in a tide-storm interactive system: Proterozoic Lower Quartzite Formation, India. Sedimentary Geology 67, 133–42.CrossRefGoogle Scholar
Chakraborty, P. P. & Paul, S. 2008. Forced regressive wedges on a Neoproterozoic siliciclastic shelf: Chandarpur Group, central India. Precambrian Research 162, 227–47.CrossRefGoogle Scholar
Chakraborty, P. P., Sarkar, A., Bhattacharya, S. K. & Sanyal, P. 2002. Isotopic and sedimentological clues to productivity change in Late Riphean Sea: A case study from two intracratonic basins of India. Journal of Earth System Science 111, 379–90.CrossRefGoogle Scholar
Chakraborty, P. P., Sarkar, A., Das, K. & Das, P. 2009. Fan-delta and storm-dominated shelf sedimentation in the Proterozoic Singhora Group, Chattisgarh Supergroup, central India. Precambrian Research 170, 88106.CrossRefGoogle Scholar
Chalapathi Rao, N. V., Miller, J. A., Gibson, S. A., Pyle, D. M. & Madhavan, V. 1999. Precise Ar40/Ar39 age determinations of the Kotakonda kimberlite and Chelima lamproite, India: implication to the timing of mafic dyke swarm emplacement in the eastern Dharwar craton. Journal of Geological Society of India 53, 425–32.Google Scholar
Chanda, S. K. & Bhattacharya, A. 1982. Vindhyan sedimentation and paleogeography: post-Auden development. In Geology of Vindhyachal (eds Valdiya, K. S., Bhatia, S. B. & Gaur, V. K.), pp. 88101. New Delhi: Hindustan Publishing Corporation Press.Google Scholar
Chaudhuri, A. K., Saha, D., Deb, G. K., Patranabis Deb, S., Mukherjee, M. K. & Ghosh, G. 2002. The Purana basins of southern cratonic province of India – a case for Mesoproterozoic fossil rifts. Gondwana Research 5, 2333.CrossRefGoogle Scholar
Clark, S. H. B., Pooleb, F. G. & Wang, Z. 2004. Comparison of some sediment-hosted, stratiform barite deposits in China, the United States, and India. Ore Geology Review 24, 85101.CrossRefGoogle Scholar
Das, K., Yokoyama, K., Chakraborty, P. P. & Sarkar, A. 2009. Basal tuffs and contemporaneity of the Chattisgarh and Khariar Basins based on new dates and geochemistry. The Journal of Geology 117, 88102.CrossRefGoogle Scholar
De, C. 2007. Study of the Proterozoic life of the Chhattisgarh basin, Chhattisgarh in the light of early organic evolution, biostratigraphy and paleoenvironments. Records of the Geological Survey of India 139, 23–4.Google Scholar
Des Marais, D. J., Strauss, H., Summons, R. E. & Hayes, J. M. 1992. Carbon isotope evidence for the stepwise oxidation of the Proterozoic environment. Nature 359, 605–9.CrossRefGoogle ScholarPubMed
Eriksson, P. G., Condie, K. C., Tirsgaard, H., Mueller, W. U., Altermann, W., Miall, A. D., Aspler, L. B., Catuneanu, O. & Chiarenzelli, J. R. 1998. Precambrian clastic sedimentation systems. Sedimentary Geology 120, 553.CrossRefGoogle Scholar
Fike, D. A., Grotzinger, J. P., Pratt, L. M. & Summons, R. E. 2006. Oxidation of the Ediacaran Ocean. Nature 444, 744–7.CrossRefGoogle ScholarPubMed
Friedman, G. M., Sanders, J. E. & Kopaska-Merkel, D. C. 1992. Principles of sedimentary deposits. New York: Macmillan, 717 pp.Google Scholar
Gellatly, A. M. & Lyons, T. W. 2005. Trace sulfate in mid-Proterozoic carbonates and the sulfur isotope record of biospheric evolution. Geochimica et Cosmochimica Acta 69, 3813–29.CrossRefGoogle Scholar
Goldhaber, M. B. & Kaplan, I. R. 1974. The sulphur cycle. In The Sea (ed. Goldberg, E. D.), pp. 569655. Wiley-Interscience.Google Scholar
Guha, J. 1971. Sulphur isotope study of the pyrite deposit of Amjhore, Shahbad District, Bihar. India. Economic Geology 66, 326–30.CrossRefGoogle Scholar
Helz, G. R., Miller, C. V., Charnock, J. M., Mosselmans, J. F. W., Pattrick, R. A. D., Garner, C. D. & Vaughan, D. J. 1996. Mechanism of molybdenum removal from the sea and its concentration in black shales: EXAFS evidence. Geochimica et Cosmochimica Acta 60, 3631–42.CrossRefGoogle Scholar
Hoffman, P. F., Kaufman, A. J., Halverson, G. P. & Schrag, D. P. 1998. A Neoproterozoic snowball earth. Science 281, 1342–6.CrossRefGoogle ScholarPubMed
Holland, H. D. 1984. The Chemical Evolution of the Atmosphere and Oceans. Princeton: Princeton University Press, 583 pp.Google Scholar
Holland, H. D. & Beukes, N. 1990. A paleoweathering profile from Griqual and West, South Africa: evidence for a dramatic rise in atmospheric oxygen between 2.2 and 1.9 by B.P. American Journal of Science 290, 134.Google Scholar
Hurtgen, M. T., Arthur, M. A., Suits, N. S. & Kaufmann, A. J. 2002. The sulphur isotopic composition of Neoproterozoic seawater sulphate: implications for a snowball earth? Earth and Planetary Science Letters 203, 413–29.CrossRefGoogle Scholar
Irwin, M. L. 1965. General theory of epeiric clear water sedimentation. American Association of Petroleum Geology Bulletin 49, 445–59.Google Scholar
Jensen, S., Droser, M. L. & Gehling, J. G. 2005. Trace fossil preservation and the early evolution of animals. Palaeogeography, Palaeoclimatology Palaeoecology 220, 929.CrossRefGoogle Scholar
Jørgensen, B. B. 1979. A theoretical model of the stable isotope distribution in marine sediments. Geochimica et Cosmochimica Acta 43, 363–74.CrossRefGoogle Scholar
Jørgensen, B. B. 1990. A thiosulfate shunt in the sulphur cycle of marine sediments. Science 249, 152–4.CrossRefGoogle ScholarPubMed
Kah, L. C., Lyons, T. W. & Chesley, J. T. 2001. Geochemistry of a 1.2 Ga carbonate–evaporite Succession, Northern Baffin Islands: Implications for Mesoproterozoic Marine Evolution. Precambrian Research 111, 203–34.CrossRefGoogle Scholar
Kah, L. C., Lyons, T. W. & Frank, T. D. 2004. Low marine sulphate and protracted oxygenation of the Proterozoic biosphere. Nature 431, 834–8.CrossRefGoogle ScholarPubMed
Kah, L. C., Sherman, A. B., Narbonne, G. M., Kaufman, A. J., Knoll, A. H. & James, N. P. 1999. Isotope stratigraphy of the Mesoproterozoic Bylot Supergroup, Northern Baffin Island: Implications for regional lithostratigraphic correlations. Canadian Journal of Earth Sciences 36, 313–32.CrossRefGoogle Scholar
Kasting, J. F., Tazewell Howard, M., Wallmann, K., Veizer, J., Shields, G. & Jaffrés, J. 2006. Paleoclimates, ocean depth, and the oxygen isotopic composition of seawater. Earth and Planetary Science Letters 252, 8293.CrossRefGoogle Scholar
Kiyosu, Y. & Krouse, H. R. 1990. The role of organic acid in the abiogenic reduction of sulfate and the sulfur isotope effect. Geochemical Journal 24, 21–7.CrossRefGoogle Scholar
Knoll, A. H. 1992. Biological and biogeochemical preludes to the Ediacaran radiation, In Origin and Early Evolution of the Metazoa (eds Lipps, J. H. & Signor, P. W.), pp. 5384. New York: Plenum.CrossRefGoogle Scholar
Krouse, H. R. 1977. Sulphur isotope studies and their role in petroleum exploration. Journal of Geochemical Exploration 7, 189211.CrossRefGoogle Scholar
Lewis, B. L. & Landing, W. M. 1992. The investigation of dissolved and suspended-particulate trace metal fractionation in the Black Sea. Marine Chemistry 40, 105–41.CrossRefGoogle Scholar
Logan, G. A., Hayes, J. M., Hieshima, G. B. & Summons, R. E. 1995. Terminal Proterozoic reorganization of biogeochemical cycles. Nature 376, 53–6.CrossRefGoogle ScholarPubMed
Machel, H. G., Krouse, H. R. & Sassen, R. 1995. Products and distinguishing criteria of bacterial and thermochemical sulfate reduction. Applied Geochemistry 10, 373–89.CrossRefGoogle Scholar
Malone, S. J., Meert, J. G., Banerjee, D. M., Pandit, M. K., Tamrat, E., Kamenov, G. D., Pradhan, V. R. & Sohl, L. E. 2008. Paleomagnetism and Detrital Zircon Geochronology of the Upper Vindhyan Sequence, Son Valley and Rajasthan, India: A ca. 1000 Ma closure age for the Purana Basins? Precambrian Research 164, 137–59.CrossRefGoogle Scholar
Moitra, A. K. 1995. Depositional environmental history of the Chattisgarh basin, M. P., based on Stromatolites and Microbiota. Journal of Geological Society of India 46, 359–68.Google Scholar
Mukhopadhyay, J., Ghosh, G. & Nandi, A. K. 2006. Depositional setting of the Kolhan Group: its implications for the development of a Meso- to Neoproterozoic deep-water basin on the South Indian craton. South African Journal of Geology 109, 183–92.CrossRefGoogle Scholar
Murti, K. S. 1987. Stratigraphy and sedimentation in Chhattisgarh Basin. In Purana Basins of Peninsular India (Middle to Late Proterozoic) (ed. Radhakrishna, B. P.), pp. 239–60. Geological Society of India, Memoir no. 6.Google Scholar
Nagaraja Rao, B. K., Rajurkar, S. T., Ramalingaswamy, G. & Ravindra Babu, B. 1987. Stratigraphy, structure and evolution of the Cuddapah basin. In Purana Basins of Peninsular India (Middle to Late Proterozoic) (ed. Radhakrishna, B. P.), pp. 3386. Geological Society of India, Memoir no. 6.Google Scholar
Ohmoto, H. & Rye, R. O. 1979. Isotopes of sulphur and carbon. In Geochemistry of Hydrothermal Ore Deposits, 2nd ed. (ed. Barnes, H. L.), pp. 509–67. Wiley.Google Scholar
Patranabis Deb, S. 2004. Lithostratigraphy of the Neoproterozoic Chattisgarh Sequence, its bearing on the tectonics and palaeogeography. Gondwana Research 7, 323–37.Google Scholar
Patranabis Deb, S., Bickford, M. E., Hill, B., Chaudhuri, A. K. & Basu, A. 2007. SHRIMP Ages of Zircon in the Uppermost Tuff in Chattisgarh Basin in Central India Require ~ 500-Ma Adjustment in Indian Proterozoic Stratigraphy. The Journal of Geology 115, 407–15.CrossRefGoogle Scholar
Paul, S. & Chakraborty, P. P. 2003. Tidal sandwave geometry in Neoproterozoic epeiric sea: Examples from two basins of central India. Gondwana Geological Magazine 7, 349–61.Google Scholar
Poulton, S. W., Fralick, P. W. & Canfield, D. E. 2004. The transition to a sulphidic ocean ~1.84 billion years ago. Nature 431, 173–7.CrossRefGoogle ScholarPubMed
Ramam, P. K. & Murthy, V. N. 1997. Geology of Andhra Pradesh. Geological Society of India, 245 pp.Google Scholar
Rasmussen, B., Bose, P. K., Sarkar, S., Banerjee, S., Fletcher, I. R. & McNaughton, N. J. 2002. 1.6 Ga U–Pb zircon age for the Chorhat Sandstone, Lower Vindhyan, India: possible implications for early evolution of animals. Geology 30, 103–6.2.0.CO;2>CrossRefGoogle Scholar
Ray, J. S. 2006. Age of the Vindhyan Supergroup: A review of recent findings. Journal of Earth System Science 115, 149–60.CrossRefGoogle Scholar
Ray, J. S., Martin, M. W., Veizer, J. & Bowring, S. A. 2002. U–Pb zircon dating and Sr isotope systematics of the Vindhyan Supergroup, India. Geology 30, 131–4.2.0.CO;2>CrossRefGoogle Scholar
Ray, J. S., Veizer, J. & Davis, W. J. 2003. C, O, Sr and Pb isotope systematics of carbonate sequences of the Vindhyan Supergroup, India: age, diagenesis, correlations and implications for global events. Precambrian Research 121, 103–40.CrossRefGoogle Scholar
Rees, C. E. 1973. A steady-state model for sulphur isotope fractionation in bacterial reduction. Geochimica et Cosmochimica Acta 37, 1141–62.CrossRefGoogle Scholar
Riciputi, L. R., Cole, D. R. & Machel, H. G. 1996. Sulphide formation in reservoir carbonates of the Devonian Nisku Formation, Alberta, Canada: An ion microprobe study. Geochimica et Cosmochimica Acta 60, 325–36.CrossRefGoogle Scholar
Sarangi, S., Gopalan, K. & Kumar, S. 2004. Pb–Pb age of earliest megascopic eukaryotic alga bearing Rohtas Formation, Vindhyan Supergroup, India: Implications for Precambrian atmospheric oxygen evolution. Precambrian Research 132, 107–21.CrossRefGoogle Scholar
Sawlowicz, Z. 1993. Pyrite framboids and their development: a new conceptual mechanism. International Journal of Earth Science 82, 148–56.Google Scholar
Schwarcz, H. P. & Burnie, S. W. 1973. Influence of sedimentary environments on sulfur isotope ratios in clastic rocks: a review. Mineralium Deposita 8, 264–77.CrossRefGoogle Scholar
Seilacher, A., Bose, P. K. & Pflüger, F. 1998. Triploblastic animals more than 1 billion years ago: trace fossil evidence from India. Science 282, 80–3.CrossRefGoogle ScholarPubMed
Sharma, R., Verma, P. & Law, R. W. 2006. Sulphur isotopic study on barite mineralization of the Tons valley, Lesser Himalaya, India: Implication for source and formation process. Current Science 90, 440–3.Google Scholar
Shaw, A. B. 1964. Time in stratigraphy. New York: McGraw-Hill.Google Scholar
Shen, Y., Canfield, D. E. & Knoll, A. H. 2002. Middle Proterozoic ocean chemistry: evidence from the McArthur Basin, northern Australia. American Journal of Science 302, 81109.CrossRefGoogle Scholar
Shields, G. & Veizer, J. 2002. Precambrian marine carbonate isotope database: version 1.1. Geochemistry Geophysics Geosystems 3, U1U12.CrossRefGoogle Scholar
Sinha, D. K., Raju, K. A., Bhaskar, D. V. & Asha, K. 2001. Sulphur isotopic characteristics of pyrite and galena from the Singhora Group, Chattisgarh Supergroup, India, genetic implications. Journal of the Geological Society of India 57, 171–7.Google Scholar
Strauss, H. 1997. The isotopic composition of sedimentary sulphur through time. Palaeogeography, Palaeoclimatology Palaeoecology 132, 97118.CrossRefGoogle Scholar
Strauss, H. 1999. Geological evolution from isotope proxy signals – sulphur. Chemical Geology 161, 89–10.CrossRefGoogle Scholar
Strauss, H. & Schieber, J. 1990. A sulphur isotope study of pyrite genesis: The Mid-Proterozoic Newland Formation, Belt Supergroup, Montana. Geochimica et Cosmochimica Acta 54, 197204.CrossRefGoogle Scholar
Sumner, D. Y. & Grotzinger, J. P. 1996. Were kinetics of Archean calcium carbonate precipitation related to oxygen concentration? Geology 24, 119–22.2.3.CO;2>CrossRefGoogle ScholarPubMed
Sur, S., Schieber, J. & Banerjee, S. 2004. The Bijaygarh and Rampur shales of the Vindhyan Supergroup, India: Transgressive system tract source rocks of Mid-Proterozoic age. Abstract American Association of Petroleum Geology Annual Meeting, Utah 14, A165.Google Scholar
Sur, S., Schieber, J. & Banerjee, S. 2006. Petrographic observations suggestive of microbial mats from Rampur Shale and Bijaigarh Shale, Vindhyan basin, India. Journal of Earth System Science 115, 61–6.CrossRefGoogle Scholar
Zachariah, J. K., Bhaskar Rao, Y. J., Srinivasan, R. & Gopalan, K. 1999. Pb, Sr and Nd isotope systematics of uranium mineralized stromatolitic dolomites from the Proterozoic Cuddapah Supergroup, south India: constraints on age and provenance. Chemical Geology 162, 4964.CrossRefGoogle Scholar