Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-25T23:23:16.970Z Has data issue: false hasContentIssue false

Products and timing of diagenetic processes in Upper Rotliegend sandstones from Bebertal (North German Basin, Parchim Formation, Flechtingen High, Germany)

Published online by Cambridge University Press:  31 January 2012

CORNELIUS FISCHER*
Affiliation:
Geowissenschaftliches Zentrum, Abteilung Sedimentologie/Umweltgeologie, Georg-August-Universität, Göttingen, Germany Department of Earth Science, Rice University, Houston, Texas, USA
ISTVÁN DUNKL
Affiliation:
Geowissenschaftliches Zentrum, Abteilung Sedimentologie/Umweltgeologie, Georg-August-Universität, Göttingen, Germany
HILMAR VON EYNATTEN
Affiliation:
Geowissenschaftliches Zentrum, Abteilung Sedimentologie/Umweltgeologie, Georg-August-Universität, Göttingen, Germany
JAN R. WIJBRANS
Affiliation:
Department of Isotope Geochemistry, Vrije Universiteit, Amsterdam, The Netherlands
REINHARD GAUPP
Affiliation:
Institut für Geowissenschaften, Friedrich-Schiller-Universität, Jena, Germany
*
Author for correspondence: cornelius.fischer@geo.uni-goettingen.de

Abstract

Aeolian-fluvial Upper Rotliegend sandstones from Bebertal outcrops (Flechtingen High, North Germany) are an analogue for deeply buried Permian gas reservoir sandstones of the North German Basin (NGB). We present a paragenetic sequence as well as thermochronological constraints to reconstruct the diagenetic evolution and to identify periods of enhanced mesodiagenetic fluid–rock reactions in sandstones from the southern flank of the NGB. Bebertal sandstones show comparatively high concentrations of mesodiagenetically formed K-feldspar but low concentrations of illite cements. Illite-rich grain rims were found to occur preferentially directly below sedimentary bounding surfaces, i.e. aeolian superimposition surfaces, and indicate the lowest intergranular volume. Illite grain rims also indicate sandstone sections with low quartz and feldspar cement concentrations but high loss of intergranular volume due to compaction. 40Ar–39Ar age determination of pronounced K-feldspar grain overgrowths and replacements of detrital grains indicates two generations: an early (Triassic) and a late (Jurassic) generation. The latter age range is similar to published diagenetic illite ages from buried Rotliegend reservoir sandstones. The first generation suggests an early intense mesodiagenetic fluid flow with remarkably high K+ activity synchronous with fast burial of proximal, initial graben sediments on the southern flank of the NGB. Accordingly, zircon fission-track data indicate that the strata already reached the zircon partial annealing zone of approximately 200°C during early mesodiagenesis. Zircon (U–Th)/He ages (92 ± 12 Ma) as well as apatite fission-track ages (~ 71–75 Ma) indicate the termination of mesodiagenetic processes, caused by rapid exhumation of the Flechtingen High during Late Cretaceous basin inversion.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amthor, J. E. & Okkerman, J. 1998. Influence of early diagenesis on reservoir quality of Rotliegende sandstones, northern Netherlands. American Association of Petroleum Geologists Bulletin 82, 2246–65.Google Scholar
Bayer, U., Grad, M., Pharaoh, T. C., Thybo, H., Guterch, A., Banka, D., Lamarche, J., Lassen, A., Lewerenz, B., Scheck, M. & Marotta, A. M. 2002. The southern margin of the East European Craton: new results from seismic sounding and potential fields between the North Sea and Poland. Tectonophysics 360, 301–14.CrossRefGoogle Scholar
Bayer, U., Scheck, M., Rabbel, W., Krawczyk, C. M., Gotze, H. J., Stiller, M., Beilecke, T., Marotta, A. M., Barrio-Alvers, L. & Kuder, J. 1999. An integrated study of the NE German Basin. Tectonophysics 314, 285307.Google Scholar
Darbha, G. K., Schäfer, T., Heberling, F., Lüttge, A. & Fischer, C. 2010. Retention of latex colloids on calcite as a function of surface roughness and topography. Langmuir 26, 4743–52.CrossRefGoogle ScholarPubMed
Donelick, R. A., Ketcham, R. A. & Carlson, W. D. 1999. Variability of apatite fission-track annealing kinetics: II. Crystallographic orientation effects. American Mineralogist 84, 1224–34.CrossRefGoogle Scholar
Dunkl, I. 2002. Trackkey: a Windows program for calculation and graphical presentation of fission track data. Computers & Geosciences 28, 312.CrossRefGoogle Scholar
Dunkl, I. & Székely, B. 2002. Component analysis with visualization of fitting – PopShare, a Windows program for data analysis. Geochimica et Cosmochimica Acta 66, A201.Google Scholar
Ellenberg, J., Falk, F., Grumbt, E., Lützner, H. & Ludwig, A. O. 1976. Sedimentation des höheren Unterperms der Flechtinger Scholle. Zeitschrift für Geologische Wissenschaften 4, 705–37.Google Scholar
Farley, K. A. 2002. (U-Th)/He dating: techniques, calibrations, and applications. Noble Gases in Geochemistry and Cosmochemistry 47, 819–44.CrossRefGoogle Scholar
Farley, K. A., Wolf, R. A. & Silver, L. T. 1996. The effects of long alpha-stopping distances on (U-Th)/He ages. Geochimica et Cosmochimica Acta 60, 4223–9.CrossRefGoogle Scholar
Fischer, C., Gaupp, R., Dimke, M. & Sill, O. 2007. A 3D high resolution model of bounding surfaces in aeolian-fluvial deposits: an outcrop analogue study from the Permian Rotliegend, Northern Germany. Journal of Petroleum Geology 30, 257–73.Google Scholar
Fischer, C., Karius, V., Weidler, P. G. & Lüttge, A. 2008. Relationship between micrometer to submicrometer surface roughness and topography variations of natural iron oxides and trace element concentrations. Langmuir 24, 3250–66.CrossRefGoogle ScholarPubMed
Fryberger, S. G. 1993. A review of aeolian bounding surfaces, with examples from the Permian Minnelusa Formation, USA. In Characterization of Fluvial and Aeolian Reservoirs (eds North, C. P. & Prosser, D. J.), pp. 167–97 Geological Society of London, Special Publication no. 73.Google Scholar
Gast, R. 1991. The perennial Rotliegend saline lake in NW Germany. Geologisches Jahrbuch A 119, 2559.Google Scholar
Gast, R., Dusar, M., Breitkreuz, C., Gaupp, R., Schneider, J. W., Stemmerik, L., Geluk, M., Geissler, M., Kiersnowski, H., Glennie, K., Kabel, S. & Jones, N. 2010. Rotliegend. In Petroleum Geological Atlas of the Southern Permian Basin Area (eds Doornenbal, J. C. & Stevenson, A. G.). Houten, The Netherlands: EAGE Publications.Google Scholar
Gaupp, R. 1996. Diagenesis types and their application in diagenesis mapping. Zentralblatt für Geologie und Paläontologie, Teil 1, 1994 11/12, 1183–99.Google Scholar
Gaupp, R., Matter, A., Platt, J., Ramseyer, K. & Walzebuck, J. 1993. Diagenesis and fluid evolution of deeply buried Permian (Rotliegende) gas-reservoirs, Northwest Germany. American Association of Petroleum Geologists Bulletin 77, 1111–28.Google Scholar
Gleadow, A. J. W. 1981. Fission-track dating methods: what are the real alternatives? Nuclear Tracks and Radiation Measurements 5, 314.CrossRefGoogle Scholar
Gleadow, A. J. W., Hurford, A. J. & Quaife, R. D. 1976. Fission-track dating of zircon – improved etching techniques. Earth and Planetary Science Letters 33, 273–6.CrossRefGoogle Scholar
Glennie, K. W. 2001. Exploration activities in the Netherlands and North-West Europe since Groningen. Geologie En Mijnbouw–Netherlands Journal of Geosciences 80, 3352.Google Scholar
Gluyas, J. & Leonard, A. 1995. Diagenesis of the Rotliegend sandstone: the answer ain't blowin’ in the wind. Marine and Petroleum Geology 12, 491–7.CrossRefGoogle Scholar
Green, P. F. 1981. A new look at statistics in fission-track dating. Nuclear Tracks and Radiation Measurements 5, 7786.CrossRefGoogle Scholar
Hillier, S., Fallick, A. E. & Matter, A. 1996. Origin of pore-lining chlorite in the aeolian Rotliegend of northern Germany. Clay Minerals 31, 153–71.CrossRefGoogle Scholar
Houseknecht, D. W. 1987. Assessing the relative importance of compaction processes and cementation to reduction of porosity in sandstones. American Association of Petroleum Geologists Bulletin 71, 633–42.Google Scholar
Hurford, A. J. 1998. Zeta: the ultimate solution to fission-track analysis calibration or just an interim measure? In Advances in Fission-Track Geochronology (eds den Haute, P. Van & Corte, F. De), pp. 1932. Dordrecht: Kluwer Academic Publishers.Google Scholar
Hurford, A. J. & Green, P. F. 1983. The zeta-age calibration of fission-track dating. Isotope Geoscience 1, 285317.Google Scholar
Kelley, S. 1995. Ar-Ar dating by laser microprobe. In Microprobe Techniques in the Earth Sciences (eds Potts, J. P., Bowles, J. F. W., Reed, S. J. B. & Cave, M. R.), pp. 327–58. London: Chapman & Hall.Google Scholar
Kockel, F. 2003. Inversion structures in Central Europe – expressions and reasons, an open discussion. Geologie En Mijnbouw–Netherlands Journal of Geosciences 82, 351–66.Google Scholar
Koppers, A. A. P. 2002. ArArCALC – software for Ar-40/Ar-39 age calculations. Computers & Geosciences 28, 605–19.CrossRefGoogle Scholar
Kuhnen, F., Barmettler, K., Bhattacharjee, S., Elimelech, M. & Kretzschmar, R. 2000. Transport of iron oxide colloids in packed quartz sand media: monolayer and multilayer deposition. Journal of Colloid and Interface Science 231, 3241.CrossRefGoogle ScholarPubMed
Kulke, H., Gast, R., Helmuth, H. & Lützner, H. 1993. Harz Area, Germany: typical Rotliegend and Zechstein reservoirs in the Southern Permian Basin (Central Europe). In Field Trip 4, AAPG International Conference & Exhibition, The Hague, October 1993 (eds Mulock-Houwer, J. A., Pilaar, W. F. & Graaff-Trouwborst, V. D.).Google Scholar
Lanson, B., Beaufort, D., Berger, G., Bauer, A., Cassagnabere, A. & Meunier, A. 2002. Authigenic kaolin and illitic minerals during burial diagenesis of sandstones: a review. Clay Minerals 37, 122.CrossRefGoogle Scholar
Lee, M. C., Aronson, J. L. & Savin, S. M. 1985. K/Ar dating of time of gas emplacement in Rotliegendes sandstone, Netherlands. American Association of Petroleum Geologists Bulletin 69, 1381–5.Google Scholar
Lee, M. C., Aronson, J. L. & Savin, S. M. 1989. Timing and conditions of Permian Rotliegende sandstone diagenesis, Southern North-Sea – K/Ar and oxygen isotopic data. American Association of Petroleum Geologists Bulletin 73, 195215.Google Scholar
Legler, B., Gebhardt, U. & Schneider, J. W. 2005. Late Permian non-marine-marine transitional profiles in the central Southern Permian Basin, northern Germany. International Journal of Earth Sciences 94, 851–62.CrossRefGoogle Scholar
Leveille, G. P., Primmer, T. J., Dudley, G., Ellis, D. & Allinson, G. J. 1997. Diagenetic controls on reservoir quality in Permian Rotliegendes sandstones, Jupiter Fields area, southern North Sea. In Petroleum Geology of the Southern North Sea: Future and Potential (eds Ziegler, K., Turner, P. & Daines, S. R.), pp. 105–22. Geological Society of London, Special Publication no. 123.Google Scholar
Liewig, N. & Clauer, N. 2000. K-Ar dating of varied microtextural illite in Permian gas reservoirs, northern Germany. Clay Minerals 35, 271–81.Google Scholar
Littke, R., Bayer, U. & Gajewski, D. 2005. Dynamics of sedimentary basins: the example of the Central European Basin system. International Journal of Earth Sciences 94, 779–81.CrossRefGoogle Scholar
Littke, R., Krooss, B., Idiz, E. & Frielingsdorf, J. 1995. Molecular nitrogen in natural-gas accumulations – generation from sedimentary organic-matter at high-temperatures. American Association of Petroleum Geologists Bulletin 79, 410–30.Google Scholar
Littke, R., Scheck-Wenderoth, M., Brix, M. R. & Nelskamp, S. 2008. Subsidence, inversion and evolution of the thermal field. In Dynamics of Complex Intracontinental Basins (eds Littke, R., Bayer, U., Gajewski, D. & Nelskamp, S.), pp.125–54. Berlin Heidelberg: Springer-Verlag.CrossRefGoogle Scholar
Mark, D. F., Parnell, J., Kelley, S. P., Lee, M. R. & Sherlock, S. C. 2010. Ar-40/Ar-39 dating of oil generation and migration at complex continental margins. Geology 38, 75–8.CrossRefGoogle Scholar
Meesters, A. G. C. A. & Dunai, T. J. 2002. Solving the production-diffusion equation for finite diffusion domains of various shapes Part 1. Implications for low-temperature (U-Th)/He thermochronology. Chemical Geology 186, 333–44.Google Scholar
Menning, M., Gast, R., Hagdorn, H., Kading, K. C., Simon, T., Szurlies, M. & Nitsch, E. 2005. Time scale for the Permian and Triassic groups in the Stratigraphical Scale of Germany 2002, cyclostratigraphic calibration of the Dyassic and Germanic Triassic groups and the age of the strata Roadium to Rhaetium 2005. Newsletters on Stratigraphy 41, 173210.CrossRefGoogle Scholar
Oelkers, E. H., Bjorkum, P. A. & Murphy, W. M. 1996. A petrographic and computational investigation of quartz cementation and porosity reduction in North Sea sandstones. American Journal of Science 296, 420–52.Google Scholar
Pasternak, M., Brinkmann, S., Messner, J. & Sedlacek, R. 2006. Erdöl und Erdgas in der Bundesrepublik Deutschland 2005. Hannover: Landesamt für Bergbau, Energie und Geologie; Referat Kohlenwasserstoffgeologie, 67 pp.Google Scholar
Platt, J. 1993. Controls on clay mineral distribution and chemistry in the early Permian Rotliegend of Germany. Clay Minerals 28, 393416.CrossRefGoogle Scholar
Purvis, K. 1992. Lower Permian Rotliegend Sandstones, Southern North-Sea – a case-study of sandstone diagenesis in evaporite-associated sequences. Sedimentary Geology 77, 155–71.Google Scholar
Rae, E. I. C. & Manning, D. A. C. 1996. Experimentally-determined solute yields from kaolinite-illite/muscovite assemblages under diagenetic conditions of pressure and temperature. Clay Minerals 31, 537–47.Google Scholar
Reiners, P. W., Spell, T. L., Nicolescu, S. & Zanetti, K. A. 2004. Zircon (U-Th)/He thermochronometry: He diffusion and comparisons with Ar-40/Ar-39 dating. Geochimica et Cosmochimica Acta 68, 1857–87.Google Scholar
Robinson, A. G., Coleman, M. L. & Gluyas, J. G. 1993. The age of illite cement growth, Village Fields Area, Southern North-Sea – Evidence from K-Ar ages and O-18/O-16 ratios. American Association of Petroleum Geologists Bulletin 77, 6880.Google Scholar
Ryan, J. N. & Gschwend, P. M. 1992. Effect of iron diagenesis on the transport of colloidal clay in an unconfined sand aquifer. Geochimica et Cosmochimica Acta 56, 1507–21.Google Scholar
Scheck, M., Barrio-Alvers, L., Bayer, U. & Gotze, H. J. 1999. Density structure of the Northeast German basin: 3D modelling along the DEKORP line BASIN96. Physics and Chemistry of the Earth Part A – Solid Earth and Geodesy 24, 221–30.Google Scholar
Schmidt-Mumm, A. & Wolfgramm, M. 2002. Diagenesis and fluid mobilisation during the evolution of the North German Basin – evidence from fluid inclusion and sulphur isotope analysis. Marine and Petroleum Geology 19, 229–46.CrossRefGoogle Scholar
Schmidt-Mumm, A. & Wolfgramm, M. 2004. Fluid systems and mineralization in the north German and Polish basin. Geofluids 4, 315–28.CrossRefGoogle Scholar
Schneider, J. & Gebhardt, U. 1993. Litho- und biofaziesmuster in intra- und extramontanen Senken des Rotliegend (Perm, Nord- und Ostdeutschland). Geologisches Jahrbuch A 131, 5798.Google Scholar
Schöner, R. & Gaupp, R. 2005. Contrasting red bed diagenesis: the southern and northern margin of the Central European Basin. International Journal of Earth Sciences 94, 897916.CrossRefGoogle Scholar
Schreiber, A. 1960. Das Rotliegende des Flechtinger Höhenzuges. Freiberger Forschungshefte C 82, 1132.Google Scholar
Schretzenmayr, S. 1993. Bruchkinematik des Haldenslebener und Gardelegener Abbruchs (Scholle von Calvörde). Geologisches Jahrbuch A 131, 219–38.Google Scholar
Schröder, L., Plein, E., Bachmann, G. H., Gast, R. E., Gebhardt, U., Graf, R., Helmuth, H. J., Pasternak, M., Porth, H. & Süssmuth, S. 1995. Stratigraphiche Neugliederung des Rotliegend im Norddeutschen Becken. Geologisches Jahrbuch A 148, 321.Google Scholar
Sherlock, S. C., Lucks, T., Kelley, S. P. & Barnicoat, A. 2005. A high resolution record of multiple diagenetic events: ultraviolet laser microprobe Ar/Ar analysis of zoned K-feldspar overgrowths. Earth and Planetary Science Letters 238, 329–41.CrossRefGoogle Scholar
Small, J. S. 1993. Experimental-determination of the rates of precipitation of authigenic illite and kaolinite in the presence of aqueous oxalate and comparison to the K/Ar ages of authigenic illite in reservoir sandstones. Clays and Clay Minerals 41, 191208.CrossRefGoogle Scholar
Small, J. S. & Manning, D. A. C. 1993. Laboratory reproduction of morphological variation in petroleum reservoir clays: monitoring of fluid composition during illite precipitation. In Geochemistry of Clay-Pore Fluid Interactions (eds Manning, D. A. C., Hall, P. L. & Hughes, C. R.), pp. 181212. London: Chapman and Hall.Google Scholar
Taylor, T. R., Giles, M. R., Hathon, L. A., Diggs, T. N., Braunsdorf, N. R., Birbiglia, G. V., Kittridge, M. G., Macaulay, C. I. & Espejo, I. S. 2010. Sandstone diagenesis and reservoir quality prediction: models, myths, and reality. American Association of Petroleum Geologists Bulletin 94, 1093–132.Google Scholar
van Wees, J. D., Stephenson, R. A., Ziegler, P. A., Bayer, U., MCCann, T., Dadlez, R., Gaupp, R., Narkiewicz, M., Bitzer, F. & Scheck, M. 2000. On the origin of the Southern Permian Basin, Central Europe. Marine and Petroleum Geology 17, 4359.Google Scholar
Voigt, T., von Eynatten, H. & Franzke, H. J. 2004. Late Cretaceous unconformities in the Subhercynian Cretaceous Basin (Germany). Acta Geologica Polonica 54, 673–94.Google Scholar
von Eynatten, H., Voigt, T., Meier, A., Franzke, H.-J. & Gaupp, R. 2008. Provenance of the clastic Cretaceous Subhercynian Basin fill: constraints to exhumation of the Harz Mountains and the timing of inversion tectonics in the Central European Basin. International Journal of Earth Sciences 97, 1315–30.Google Scholar
Weibel, R. 1999. Effects of burial on the clay assemblages in the Triassic Skagerrak Formation, Denmark. Clay Minerals 34, 619–35.Google Scholar
Wijbrans, J. R., Pringle, M. S., Koppers, A. A. P. & Scheveers, R. 1995. Argon geochronology of small samples using the Vulkaan Argon Laserprobe. Proceedings of the Koninklijke Nederlandse Akademie Van Wetenschappen–Biological Chemical Geological Physical and Medical Sciences 98, 185218.Google Scholar
Worden, R. H. & Burley, S. D. 2003. Sandstone diagenesis. In Sandstone Diagenesis: Recent and Ancient (eds Worden, R. H. & Burley, S. D.), pp. 344. Malden, MA; Oxford, UK: Blackwell.Google Scholar
Ziegler, A. 1990. Geological Atlas of Western and Central Europe, 2nd ed. Amsterdam: Elsevier.Google Scholar
Ziegler, K. 2006. Clay minerals of the Permian Rotliegend Group in the North Sea and adjacent areas. Clay Minerals 41, 355–93.Google Scholar
Ziegler, K., Sellwood, B. W. & Fallick, A. E. 1994. Radiogenic and stable-isotope evidence for age and origin of authigenic illites in the Rotliegend, Southern North-Sea. Clay Minerals 29, 555–65.Google Scholar
Zwingmann, H., Clauer, N. & Gaupp, R. 1998. Timing of fluid flow in a sandstone reservoir of the north German Rotliegend (Permian) by K–Ar dating of related hydrothermal illite. In Dating and Duration of Fluid Flow and Fluid-Rock Interaction (ed. Parnell, J.), pp. 91106. Geological Society of London, Special Publication no. 144.Google Scholar
Zwingmann, H., Clauer, N. & Gaupp, R. 1999. Structure-related geochemical (REE) and isotopic (K-Ar, Rb-Sr, delta O-18) characteristics of clay minerals from Rotliegend sandstone reservoirs (Permian, northern Germany). Geochimica et Cosmochimica Acta 63, 2805–23.CrossRefGoogle Scholar