Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-26T21:12:54.530Z Has data issue: false hasContentIssue false

Direct numerical simulation of turbulent Taylor–Couette flow

Published online by Cambridge University Press:  31 August 2007

S. DONG*
Affiliation:
Center for Computational and Applied Mathematics, Department of Mathematics, Purdue University, West Lafayette, IN 47907, USA

Abstract

We investigate the dynamical and statistical features of turbulent Taylor–Couette flow (for a radius ratio 0.5) through three-dimensional direct numerical simulations (DNS) at Reynolds numbers ranging from 1000 to 8000. We show that in three-dimensional space the Görtler vortices are randomly distributed in banded regions on the wall, concentrating at the outflow boundaries of Taylor vortex cells, which spread over the entirecylinder surface with increasing Reynolds number. Görtler vortices cause streaky structures that form herringbone-like patterns near the wall. For the Reynolds numbers studied here, the average axial spacing of the streaks is approximately 100 viscous wall units, and the average tilting angle ranges from 16° to 20°. Simulationresults have been compared to the experimental data in the literature, and the flow dynamics and statistics are discussed in detail.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

delAlamo, J. C. Alamo, J. C., Jimenez, J., Zandonade, P. & Moser, R. D. 2006 Self-similar vortex clusters in the turbulent logarithmic region. J. Fluid Mech. 561, 329358.Google Scholar
Barcilon, A. & Brindley, J. 1984 Organized structures in turbulent Taylor-Couette flow. J. Fluid Mech. 143, 429449.CrossRefGoogle Scholar
Barcilon, A., Brindley, J., Lessen, M. & Mobbs, F. R. 1979 Marginal instability in Taylor-Couette flows at a high Taylor number. J. Fluid Mech. 94, 453463.CrossRefGoogle Scholar
Barenghi, C. F. & Jones, C. A. 1989 Modulated Taylor-Couette flow. J. Fluid Mech. 208, 127160.CrossRefGoogle Scholar
Batten, W. M., Bressloff, N. W. & Turnock, S. R. 2002 Transition from vortex to wall driven turbulence production in the Taylor-Couette system with a rotating inner cylinder. Intl J. Numer. Method Fluids. 38, 207226.CrossRefGoogle Scholar
vanden Berg, T. H. den Berg, T. H., Doering, C. R., Lohse, D. & Lathrop, D. P. 2003 Smooth and rough boundaries in turbulent Taylor-Couette flow. Phys. Rev. E 68, 036307.Google Scholar
Bilgen, E. & Boulos, E. 1973 Functional dependence of torque coefficient of coaxial cylinders gap width and reynolds numbers. Trans. ASME: J. Fluids Engng. 95, 122126.Google Scholar
Bilson, M. & Bremhorst, K. 2007 Direct numerical simulation of turbulent Taylor-Couette flow. J. Fluid Mech. 579, 227270.CrossRefGoogle Scholar
Brandstater, A. & Swinney, H. L. 1987 Strange attractors in weakly turbulent Couette-Taylor flow. Phys. Rev. A 35, 22072220.CrossRefGoogle ScholarPubMed
Cliffe, K. A. & Mullin, T. 1985 A numerical and experimental study of anomalous modes in the Taylor experiment. J. Fluid Mech. 153, 243258.CrossRefGoogle Scholar
Coles, D. 1965 Transition in circular Couette flow. J. Fluid Mech. 21, 385425.CrossRefGoogle Scholar
Coughlin, K. T. & Marcus, P. S. 1992 a Modulated waves in Taylor-Couette flow Part 1. analysis. J. Fluid Mech. 234, 118.CrossRefGoogle Scholar
Coughlin, K. T. & Marcus, P. S. 1992 b Modulated waves in Taylor-Couette flow Part 2. numerical simulation. J. Fluid Mech. 234, 1946.CrossRefGoogle Scholar
Coughlin, K. & Marcus, P. S. 1996 Turbulent bursts in Couette-Taylor flow. Phys. Rev. Lett. 77, 22142217.CrossRefGoogle ScholarPubMed
Coughlin, K. T., Marcus, P. S., Tagg, R. P. & Swinney, H. L. 1991 Distinct quasiperiodic modes with like symmetry in a rotating fluid. Phys. Rev. Lett. 66, 11611164.CrossRefGoogle Scholar
Czarny, O., Serre, E., Bontoux, P. & Lueptow, R. M. 2004 Interaction of wavy cylindrical Couette flow with endwalls. Phys. Fluids. 16, 11401148.CrossRefGoogle Scholar
DiPrima, R. C. & Swinney, H. L. 1981 Instabilities and transition in flow between concentric rotating cylinders. In Hydrodynamic Instabilities and the Transition to Turbulence (ed. Swinney, H. L. & Gollub, J. P.) pp. 139180. Springer.CrossRefGoogle Scholar
Dong, S. & Karniadakis, G. E. 2005 DNS of flow past a stationary and oscillating cylinder at Re = 10000. J. Fluids Struct. 20, 519531.CrossRefGoogle Scholar
Dong, S., Karniadakis, G. E., Ekmekci, A. & Rockwell, D. 2006 A combined direct numerical simulation-particle image velocimetry study of the turbulent near wake. J. Fluid Mech. 569, 185207.CrossRefGoogle Scholar
Donnelly, R. J. & Simon, N. J. 1959 An empirical torque relation for supercritical flow between rotating cylinders. J. Fluid Mech. 7, 401418.CrossRefGoogle Scholar
Dubrulle, B., Dauchot, O., Daviaud, F., Longaretti, P.-Y., Richard, D. & Zahn, J.-P. 2005 Stability and turbulent transport in Taylor-Couette flow from analysis of experimental data. Phys. Fluids. 17, 095103.CrossRefGoogle Scholar
Fasel, H. & Booz, O. 1984 Numerical investigation of supercritical Taylor-vortex flow for a wide gap. J. Fluid Mech. 138, 2152.CrossRefGoogle Scholar
Fernstermatcher, P. R., Swinney, H. L. & Gollub, J. P. 1979 Dynamical instabilities and the transition to chaotic Taylor vortex flow. J. Fluid Mech. 94, 103128.CrossRefGoogle Scholar
Görtler, H. 1954 On the three-dimensional instability of laminar boundary layers on concave walls. NACA TM 1375.Google Scholar
Jeong, J. & Hussain, F. 1995 On the identification of a vortex. J. Fluid Mech. 285, 6994.CrossRefGoogle Scholar
Jeong, J., Hussain, F., Schoppa, W. & Kim, J. 1997 Coherent structures near the wall in a turbulent channel flow. J. Fluid Mech. 332, 185214.CrossRefGoogle Scholar
Jones, C. A. 1981 Nonlinear Taylor vortices and their stability. J. Fluid Mech. 102, 249261.CrossRefGoogle Scholar
Jones, C. A. 1982 On flow between counter-rotating cylinders. J. Fluid Mech. 120, 433450.CrossRefGoogle Scholar
Jones, C. A. 1985 The transition to wavy Taylor vortices. J. Fluid Mech. 157, 135162.CrossRefGoogle Scholar
Karniadakis, G. E., Israeli, M. & Orszag, S. A. 1991 High-order splitting methods for the incompressible Navier-Stokes equations. J. Comput. Phys. 97, 414443.CrossRefGoogle Scholar
Karniadakis, G. E. & Sherwin, S. J. 2005 Spectral/hp Element Methods for Computational Fluid Dynamics, 2nd edn. Oxford University Press.CrossRefGoogle Scholar
Kim, J., Moin, P. & Moser, R. 1987 Turbulent staistics in fully-developed channel flow at low reynolds-number. J. Fluid Mech. 177, 133166.CrossRefGoogle Scholar
King, G. P., Li, Y., Lee, W., Swiney, H. L. & Marcus, P. S. 1984 Wave speeds in wavy Taylor-vortex flow. J. Fluid Mech. 141, 365390.CrossRefGoogle Scholar
Kirby, R. M. & Karniadakis, G. E. 2003 De-aliasing on non-uniform grids: algorithms and applications. J. Comput. Phys. 91, 249264.CrossRefGoogle Scholar
Kline, S. J., Reynolds, W.C., Schraub, F. A. & Runstadler, P. W. 1967 The structure of turbulent boundary layers. J. Fluid Mech. 30, 741.CrossRefGoogle Scholar
Koschmieder, E. L. 1979 Turbulent Taylor vortex flow. J. Fluid Mech. 93, 515527.CrossRefGoogle Scholar
Lathrop, D. P., Fineberg, J. & Swinney, H. L. 1992 a Transition to shear-driven turbulence in Couette-Taylor flow. Phys. Rev. A 46, 63906405.CrossRefGoogle ScholarPubMed
Lathrop, D. P., Fineberg, J. & Swinney, H. L. 1992 b Turbulent flow between concentric rotating cylinders at large reynolds number. Phys. Rev. Lett. 68, 15151518.CrossRefGoogle ScholarPubMed
Lewis, G. S. & Swinney, H. L. 1999 Velocity structure functions, scaling, and transitions in high-Reynolds-number Couette-Taylor flow. Phys. Rev. E 59, 54575467.Google ScholarPubMed
Marcus, P. S. 1984 a Simulation of Taylor-Couette flow. Part 1. numerical methods and comparison with experiment. J. Fluid Mech. 146, 4564.CrossRefGoogle Scholar
Marcus, P. S. 1984 b Simulation of Taylor-Couette flow. Part 2. numerical results for wavy-vortex flow with one travelling wave. J. Fluid Mech. 146, 65113.CrossRefGoogle Scholar
Moser, R. D. & Moin, P. 1987 The effects of curvature in wall-bounded turbulent flows. J. Fluid Mech. 175, 479510.CrossRefGoogle Scholar
Moulic, S. G. & Yao, L. S. 1996 Taylor-Couette instability of travelling waves with a continuous spectrum. J. Fluid Mech. 324, 181198.CrossRefGoogle Scholar
Mujumdar, A. K. & Spalding, D. B. 1977 Numerical computation of Taylor vortices. J. Fluid Mech. 81, 295304.CrossRefGoogle Scholar
Parker, J. & Merati, P. 1996 An investigation of turbulent Taylor-Couette flow using laser Doppler velocimetry in a refractive index matched facility. Trans. ASME: J. Fluids Engng. 118, 810818.Google Scholar
Racina, A. & Kind, M. 2006 Specific power and local micromixing times in turbulenct Taylor-Couette flow. Exps. Fluids. 41, 513522.CrossRefGoogle Scholar
Rashidi, M. & Banerjee, S. 1990 The effect of boundary conditions and shear rate on streak formation and breakdown in turbulent channel flows. Phys. Fluids A 2, 18271838.CrossRefGoogle Scholar
Riechelmann, D. & Nanbu, K. 1997 Three-dimensional simulation of wavy Taylor vortex flow by direct simulation Monte Carlo method. Phys. Fluids. 9, 811813.CrossRefGoogle Scholar
Rigopoulos, J., Sheridan, J. & Thompson, M. C. 2003 State selection in Taylor-Couette flow reached with an accelerated inner cylinder. J. Fluid Mech. 489, 7999.CrossRefGoogle Scholar
Robinson, S. K. 1991 Coherent motions in the turbulent boundary layer. Annu. Rev. Fluid Mech. 23, 601.CrossRefGoogle Scholar
Saric, W. S. 1994 Görtler vortices. Annu. Rev. Fluid Mech. 26, 379409.CrossRefGoogle Scholar
She, Z.-S., Ren, K., Lewis, G. S. & Swinney, H. L. 2001 Scalings and structures in turbulent Couette-Taylor flow. Phys. Rev. E 64, 016308.Google ScholarPubMed
Smith, C. R. & Metzler, S. P. 1983 The characteristics of low-speed streaks in the near-wall region of a turbulent boundary layer. J. Fluid Mech. 129, 2754.CrossRefGoogle Scholar
Smith, G. P. & Townsend, A. A. 1982 Turbulent Couette flow between concentric cylinders at large Taylor numbers. J. Fluid Mech. 123, 187217.CrossRefGoogle Scholar
vonStamm, J. Stamm, J., Gerdts, U., Buzug, T. & Pfister, G. 1996 Symmetry breaking and period doubling on a torus in the VLF regime in Taylor-Couette flow. Phys. Rev. E 54, 49384957.Google Scholar
Swearingen, J. D. & Blackwelder, R. F. 1987 The growth and breakdown of streamwise vortices in the presence of a wall. J. Fluid Mech. 182, 255.CrossRefGoogle Scholar
Takeda, Y. 1999 Quasi-periodic state and transition to turbulence in a rotating Couette system. J. Fluid Mech. 389, 8199.CrossRefGoogle Scholar
Tam, W. Y. & Swinney, H. L. 1987 Mass transport in turbulent Couette-Taylor flow. Phys. Rev. A 36, 13741381.CrossRefGoogle ScholarPubMed
Taylor, G.I. 1923 Stability of a viscous liquid contained between two rotating cylinders. Phil. Trans. R. Soc. Lond. A 223, 289.Google Scholar
Tong, P., Goldburg, W. I., Huang, J. S. & Witten, T. A. 1990 Anisotropy in turbulent drag reduction. Phys. Rev. Lett. 65, 27802783.CrossRefGoogle ScholarPubMed
Townsend, A. A. 1984 Axisymmetric Couette flow at large Taylor numbers. J. Fluid Mech. 144, 329362.CrossRefGoogle Scholar
Vastano, J. A. & Moser, R. D. 1991 Short-time Lyapunov exponent analysis and the transition to chaos in Taylor-Couette flow. J. Fluid Mech. 233, 83118.CrossRefGoogle Scholar
Wei, T., Kline, E. M., Lee, S. H. K. & Woodruff, S. 1992 Görtler vortex formation at the inner cylinder in Taylor-Couette flow. J. Fluid Mech. 245, 4768.CrossRefGoogle Scholar
Wendt, F. 1933 Turbulente stromungen zwischen zwei eorierenden konaxialen zylindem. Ing.-Arch. 4, 577595.CrossRefGoogle Scholar
Wild, P. M., Djilali, N. & Vickers, G. W. 1996 Experimental and computational assessment of windage losses in rotating machinery. Trans. ASME: J. Fluids Engng. 118, 116122.Google Scholar