Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-28T14:55:23.041Z Has data issue: false hasContentIssue false

Momentum and scalar transport at the turbulent/non-turbulent interface of a jet

Published online by Cambridge University Press:  17 July 2009

J. WESTERWEEL*
Affiliation:
J. M. Burgers Centre for Fluid Dynamics, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
C. FUKUSHIMA
Affiliation:
Department of Mechanical Systems Engineering, Hiroshima Institute of Technology, Miyake 2-1-1, Saeki-ku, 731-5193 Hiroshima, Japan
J. M. PEDERSEN
Affiliation:
Department of Mechanical Engineering, Technical University of Denmark, Akademivej, Bldg. 358, DK-2800 Lyngby, Denmark
J. C. R. HUNT
Affiliation:
J. M. Burgers Centre for Fluid Dynamics, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
*
Email address for correspondence: j.westerweel@tudelft.nl

Abstract

Conditionally sampled measurements with particle image velocimetry (PIV) of a turbulent round submerged liquid jet in a laboratory have been taken at Re = 2 × 103 between 60 and 100 nozzle diameters from the nozzle in order to investigate the dynamics and transport processes at the continuous and well-defined bounding interface between the turbulent and non-turbulent regions of flow. The jet carries a fluorescent dye measured with planar laser-induced fluorescence (LIF), and the surface discontinuity in the scalar concentration is identified as the fluctuating turbulent jet interface. Thence the mean outward ‘boundary entrainment’ velocity is derived and shown to be a constant fraction (about 0.07) of the the mean jet velocity on the centreline. Profiles of the conditional mean velocity, mean scalar and momentum flux show that at the interface there are clear discontinuities in the mean axial velocity and mean scalar and a tendency towards a singularity in mean vorticity. These actual or asymptotic discontinuities are consistent with the conditional mean momentum and scalar transport equations integrated across the interface. Measurements of the fluxes of turbulent kinetic energy and enstrophy are consistent with computations by Mathew & Basu (Phys. Fluids, vol. 14, 2002, pp. 2065–2072) in showing that for a jet flow (without forcing) the entrainment process is dominated by small-scale eddying at the highly sheared interface (‘nibbling’), with large-scale engulfing making a small (less than 10%) contribution consistent with concentration measurements showing that the interior of the jet is well mixed. (Turbulent jets differ greatly from the free shear layer in this respect.) To explain the difference between velocity and scalar profiles, their conditional mean gradients are defined in terms of a local eddy viscosity and eddy diffusivity and the momentum and scalar fluxes inside the interface. Since the eddy diffusivity is larger than the eddy viscosity, the scalar profile is flatter inside the interface so that the scalar discontinuity is relatively greater than the mean velocity discontinuity. Theoretical arguments, following Hunt, Eames & Westerweel (in Proc. of the IUTAM Symp. on Computational Physics and New Perspectives in Turbulence, ed. Y. Kaneda, vol. 4, 2008, pp. 331–338, Springer), are proposed for how the vortex sheet develops, how the internal structure of the interface layer relates to the inhomogeneous rotational and irrotational motions on each side and why the dominant entrainment process of jets and wakes differs from that of free shear layers.

Type
Papers
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adrian, R. J. 1991 Particle-imaging techniques for experimental fluid mechanics. Annu. Rev. Fluid Mech. 23, 261304.CrossRefGoogle Scholar
Agrawal, A. & Prasad, A. K. 2002 Organizational modes of large-scale vortices in an axisymmetric turbulent jet. Flow Turbul. Combust. 68, 359377.CrossRefGoogle Scholar
Antonia, R. A. 1981 Conditional sampling in turbulence measurement. Annu. Rev. Fluid Mech. 13, 131156.CrossRefGoogle Scholar
Bhat, G. S. & Narasimha, R. 1996 A volumetrically heated jet: large-eddy structure and entrainment characteristics. J. Fluid Mech. 325, 303330.CrossRefGoogle Scholar
Bisset, D. K., Hunt, J. C. R., Cai, X. & Rogers, M. M. 1998 Interfaces at the outer boundaries of turbulent motions. In Annual Research Briefs, pp. 125–135. Centre for Turbulence Research.Google Scholar
Bisset, D. K., Hunt, J. C. R. & Rogers, M. M. 2002 The turbulent/non-turbulent interface bounding a far wake. J. Fluid Mech. 451, 383410.Google Scholar
Boersma, B. J., Brethouwer, G. & Nieuwstadt, F. T. M. 1998 A numerical investigation on the effect of the inflow conditions on the self-similar region of a round jet. Phys. Fluids 10, 899909.Google Scholar
Broadwell, J. E. & Breidenthal, R. E. 1982 A simple model of mixing and chemical reaction in a turbulent shear layer. J. Fluid Mech. 125, 397410.CrossRefGoogle Scholar
Brown, G. L. & Roshko, A. 1974 On density effects and large structure in turbulent mixing layers. J. Fluid Mech. 64, 775816.Google Scholar
Buch, K. A. & Dahm, W. J. A. 1996 Experimental study of the fine-scale structure of conserved scalar mixing in turbulent flows. Part 1. Sc ≫ 1. J. Fluid Mech. 317, 2171.Google Scholar
Burnet, F. & Brenguier, J.-L. 2007 Observational study of the entrainment-mixing process in warm convective clouds. J. Atmos. Sci. 64, 19952011.Google Scholar
Carruthers, D. J. & Hunt, J. C. R. 1986 Velocity fluctuations near an interface between a turbulent region and a stably stratified layer. J. Fluid Mech. 165, 475501.Google Scholar
Cazalbou, J. B., Spalart, P. R. & Bradshaw, P. 1994 On the behaviour of two-equation models at the edge of a turbulent region. Phys. Fluids 6, 17971804.Google Scholar
Chevray, R. & Tutu, N. K. 1978 Intermittency and preferential transport of heat in round jet. J. Fluid Mech. 88, 133160.Google Scholar
Chua, L. P. & Antonia, R. A. 1990 Turbulent Prandtl number in a circular jet. Intl J. Heat Mass Transfer 33, 331339.Google Scholar
Corrsin, S. & Kistler, A. L. 1955 Free-stream boundaries of turbulent flows. Tech Rep. 1244. NACA.Google Scholar
Dahm, W. J. A. & Dimotakis, P. E. 1987 Measurements of entrainment and mixing in turbulent jets. AIAA J. 25, 12161223.Google Scholar
Dimotakis, P. E. 2000 The mixing transition in turbulent flows. J. Fluid Mech. 409, 6998.Google Scholar
Ewing, D., Frohnapfel, B., George, W. K., Pedersen, J. M. & Westerweel, J. 2007 Two-point similarity in the round jet. J. Fluid Mech. 577, 309330.CrossRefGoogle Scholar
Ferré, J. A., Mumford, J. C., Savill, A. M. & Giralt, F. 1990 Three-dimensional large-eddy motions and fine-scale activity in a plane turbulent wake. J. Fluid Mech. 210, 371414.Google Scholar
Fukushima, C., Aanen, L. & Westerweel, J. 2002 Investigation of the mixing process in an axisymmetric turbulent jet using PIV and LIF. In Laser Techniques for Fluid Mechanics (Eds. Adrian, R. J., Durão, D. F. G., Durst, F., Heitor, M. V., Maeda, M. & Whitelaw, J.), pp. 339356. Springer.Google Scholar
Gaskin, S. J., McKernan, M. & Xue, F. 2004 The effect of background turbulence on jet entrainment: an experimental study of a plane jet in a shallow coflow. J. Hydraul. Res. 42, 531540.Google Scholar
Hernan, M. A. & Jimenez, J. 1982 Computer analysis of a high-speed film of the plane turbulent mixing layer. J. Fluid Mech. 119, 323345.CrossRefGoogle Scholar
Hinze, J. O. 1975 Turbulence, 2nd edn. McGraw-Hill.Google Scholar
Holzner, M., Liberzon, A., Nikitin, N., Kinzelbach, W. & Tsinober, A. 2007 Small-scale aspects of flows in proximity of the turbulent/nonturbulent interface. Phys. Fluids 19, 071702.Google Scholar
Holzner, M., Liberzon, A., Nikitin, N., Lühti, B., Kinzelbach, W. & Tsinober, A. 2008 A Lagrangian investigation of the small-scale features of turbulent entrainment through particle tracking and direct numerical simulation. J. Fluid Mech. 598, 465475.Google Scholar
Hunt, J. C. R. 1987 Vorticity and vortex dynamics in complex turbulent flows. Trans. Can. Soc. Mech. Engng 11, 2135.Google Scholar
Hunt, J. C. R. & Durbin, P. A. 1999 Perturbed vortical layers and shear sheltering. Fluid Dyn. Res. 24, 375404.CrossRefGoogle Scholar
Hunt, J. C. R., Eames, I. & Westerweel, J. 2006 Mechanics of inhomogeneous turbulence and interfacial layers. J. Fluid Mech. 554, 499519.CrossRefGoogle Scholar
Hunt, J. C. R., Eames, I. & Westerweel, J. 2008 Vortical interactions with interfacial shear layers. In Proc. of the IUTAM Symp. on Computational Physics and New Perspectives in Turbulence (ed. Kaneda, Y.), vol. 4, pp. 331338. Springer.Google Scholar
Hunt, J. C. R., Sandham, N. D., Vassilicos, J. C., Launder, B. E., Monkewitz, P. A. & Hewitt, G. F. 2001 Developments in turbulence research: a review based on the 1999 programme of the Isaac Newton Institute, Cambridge. J. Fluid Mech. 436, 353391.CrossRefGoogle Scholar
Hussain, A. K. M. F. & Clark, A. R. 1981 On the coherent structure of the axisymmetric mixing layer: a flow-visualization study. J. Fluid Mech. 104, 263294.Google Scholar
Keane, R. D. & Adrian, R. J. 1992 Theory of cross-correlation analysis of PIV images. Appl. Sci. Res. 49, 191215.Google Scholar
Khorsandi, B., Gaskin, S. & Mydlarski, L. 2007 Effect of background turbulence on the velocity field of a turbulent jet. In Proc. of the 5th Intl Symp. on Environmental Hydraulics (ISEH V), Tempe, AZ.Google Scholar
Kibens, V., Kovasznay, L. S. G. & Oswald, L. J. 1974 Turbulent–nonturbulent interface detector. Rev. Sci. Instrum. 45, 11381144.Google Scholar
Kovasznay, L. S. G., Kibens, V. & Blackwelder, R. F. 1970 Large-scale motion in the intermittent region of a turbulent boundary layer. J. Fluid Mech. 41, 283325.Google Scholar
Landreth, C. C. & Adrian, R. J. 1990 Impingement of a low Reynolds number turbulent circular jet onto a flat plate at normal incidence. Exp. Fluids 9, 7484.Google Scholar
Lubbers, C. L., Brethouwer, G. & Boersma, B. J. 2001 Simulation of the mixing of a passive scalar in a round turbulent jet. Fluid Dyn. Res. 28, 189208.Google Scholar
L'vov, V. S., Pomyalov, A., Procaccia, I. & Govindarajan, R. 2008 Random vortex-street model for a self-similar plane turbulent jet. Phys. Rev. Lett. 101, 094503.Google Scholar
Mathew, J. & Basu, A. 2002 Some characteristics of entrainment at a cylindrical turbulence boundary. Phys. Fluids 14, 20652072.Google Scholar
Mungal, M. G. & Hollingsworth, D. K. 1989 Organized motion in a very high Reynolds number jet. Phys. Fluids A 1, 16151623.Google Scholar
Mungal, M. G., Karasso, P. S. & Lozano, A. 1991 The visible structure of turbulent jet diffusion flames: large-scale organization and flame tip oscillation. Combust. Sci. Technol. 76, 165185.Google Scholar
Panchapakesan, N. R. & Lumley, J. L. 1993 Turbulence measurements in axisymmetric jets of air and helium. Part 1. Air jet. J. Fluid Mech. 246, 197223.Google Scholar
Phillips, O. M. 1955 The irrotational motion outside a free boundary layer. Proc. Camb. Phil. Soc. 51, 220.CrossRefGoogle Scholar
Pope, S. B. 2000 Turbulent Flows. Cambrige University Press.Google Scholar
Prandtl, L. 1956 Essentials of Fluid Dynamics. Dover.Google Scholar
Prasad, R. R. & Sreenivasan, K. R. 1989 Scalar interfaces in digital images of turbulent flows. Exp. Fluids 7, 259264.Google Scholar
Raffel, M., Willert, C. & Kompenhans, J. 1998 Particle Image Velocimetry: A Practical Guide. Springer.Google Scholar
Reynolds, W. C. 1972 Large-scale instabilities of turbulent wakes. J. Fluid Mech. 54, 481488.CrossRefGoogle Scholar
Ruban, A. I. & Vonatsos, K. N. 2008 Discontinuous solutions of the boundary-layer equations. J. Fluid Mech. 614, 407424.Google Scholar
Sandham, N. D., Mungal, M. G., Broadwell, J. E. & Reynolds, W. C. 1988 Scalar entrainment in the mixing layer. In Proc. of the CTR Summer Program, pp. 69–76.Google Scholar
daSilva, C. B. Silva, C. B. & Pereira, J. C. F. 2008 Invariants of the velocity-gradient, rate-of-strain, and rate-of-rotation tensors across the turbulent/nonturbulent interface in jets. Phys. Fluids 20, 055101.Google Scholar
Stanislas, M., Okamoto, K., Kähler, C. J. & Westerweel, J. 2005 Main results of the Second International PIV Challenge. Exp. Fluids 39, 170191.CrossRefGoogle Scholar
Strang, E. J. & Fernando, H. J. S. 2001 Vertical mixing and transports through a stratified shear layer. J. Phys. Oceanogr. 31, 20262048.2.0.CO;2>CrossRefGoogle Scholar
Townsend, A. A. 1976 The Structure of Turbulent Shear Flow, 2nd edn. Cambridge University Press.Google Scholar
Tropea, C., Yarin, A. & Foss, J. (Ed.) 2007 Handbook of Experimental Fluid Mechanics. Springer.Google Scholar
Tsai, Y. S., Hunt, J. C. R., Nieuwstadt, F. T. M., Westerweel, J. & Gunasekaran, B. P. N. 2007 Effect of strong external turbulence on a wall jet boundary layer. Flow Turbul. Combust. 79, 155174.Google Scholar
Tsinober, A. 2001 An Informal Introduction to Turbulence. Kluwer.Google Scholar
Turner, J. S. 1986 Turbulent entrainment. J. Fluid Mech. 173, 431471.Google Scholar
Walker, D. A. 1987 A fluorescent technique for measurement of concentration in mixing liquids. J. Phys. E 20, 217224.Google Scholar
Wallace, J. M. & Foss, J. F. 1995 The measurement of vorticity in turbulent flows. Annu. Rev. Fluid Mech. 27, 469514.Google Scholar
Webster, D. R., Roberts, P. J. W. & Ra'ad, L. 2001 Simultaneous DPTV/PLIF measurements of a turbulent jet. Exp. Fluids 30, 6572.Google Scholar
Westerweel, J. 1994 Efficient detection of spurious vectors in particle image velocimetry data sets. Exp. Fluids 16, 236247.Google Scholar
Westerweel, J. 2000 Theoretical analysis of the measurement precision in particle image velocimetry. Exp. Fluids 29, S312.Google Scholar
Westerweel, J., Dabiri, D. & Gharib, M. 1997 The effect of a discrete window offset on the accuracy of cross-correlation analysis of digital PIV recordings. Exp. Fluids 23, 2028.Google Scholar
Westerweel, J., Fukushima, C., Pedersen, J. M. & Hunt, J. C. R. 2005 Mechanics of the turbulent/nonturbulent interface of a jet. Phys. Rev. Lett. 95, 174501.Google Scholar
Westerweel, J., Hofmann, T., Fukushima, C. & Hunt, J. C. R. 2002 The turbulent/non-turbulent interface at the outer boundary of a self-similar turbulent jet. Exp. Fluids 33, 873878.Google Scholar
Westerweel, J. & Scarano, F. 2005 Universal outlier detection for PIV data. Exp. Fluids 39, 10961100.Google Scholar
Willert, C. 1997 Stereoscopic digital particle image velocimetry for application in wind tunnel flows. Meas. Sci. Technol. 8, 14651479.Google Scholar
Wygnanski, I. & Fiedler, H. E. 1969 Some measurements in the self-preserving jet. J. Fluid Mech. 38, 577612.Google Scholar
Yoda, M., Hesselink, L. & Mungal, M. G. 1994 Instantaneous three-dimensional concentration measurements in the self-similar region of a round high-Schmidt-number jet. J. Fluid Mech. 279, 313350.Google Scholar