Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-24T11:31:26.469Z Has data issue: false hasContentIssue false

Transition to global instability in transverse-jet shear layers

Published online by Cambridge University Press:  27 July 2010

J. DAVITIAN
Affiliation:
Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA 90095-1597, USA
D. GETSINGER
Affiliation:
Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA 90095-1597, USA
C. HENDRICKSON
Affiliation:
Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA 90095-1597, USA
A. R. KARAGOZIAN*
Affiliation:
Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA 90095-1597, USA
*
Email address for correspondence: ark@seas.ucla.edu

Abstract

In a recent paper (Megerian et al., J. Fluid Mech., vol. 593, 2007, pp. 93–129), experimental exploration of the behaviour of transverse-jet near-field shear-layer instabilities suggests a significant change in the character of the instability as jet-to-crossflow velocity ratios R are reduced below a critical range. The present study provides a detailed exploration of and additional insights into this transition, with quantification of the growth of disturbances at various locations along and about the jet shear layer, frequency tracking and response of the transverse jet to very strong single-mode forcing, creating a ‘lock-in’ response in the shear layer. In all instances, there is clear evidence that the flush transverse jet's near-field shear layer becomes globally unstable when R lies at or below a critical range near 3. These findings have important implications for and provide the underlying strategy by which active control of the transverse jet may be developed.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alves, L. S. 2006 Transverse jet shear layer instabilities: linear stability analysis and numerical simulations. PhD thesis, University of California, Department of Mechanical and Aerospace Engineering, Los Angeles, CA.Google Scholar
Alves, L. S. de B., Kelly, R. E. & Karagozian, A. R. 2007 Local stability analysis of an inviscid transverse jet. J. Fluid Mech. 581, 401418.Google Scholar
Alves, L. S. de B., Kelly, R. E. & Karagozian, A. R. 2008 Transverse-jet shear-layer instabilities. Part 2. Linear analysis for large jet-to-crossflow velocity ratio. J. Fluid Mech. 602, 383401.Google Scholar
Bagheri, S., Schlatter, P., Schmid, P. J. & Henningson, D. S. 2009 Global stability of a jet in crossflow. J. Fluid Mech. 624, 3344.Google Scholar
Broadwell, J. E. & Breidenthal, R. E. 1984 Structure and mixing of a transverse jet in incompressible flow. J. Fluid Mech. 148, 405412.CrossRefGoogle Scholar
Camussi, R., Guj, G. & Stella, A. 2002 Experimental study of a jet in a crossflow at very low Reynolds number. J. Fluid Mech. 454, 113144.CrossRefGoogle Scholar
Chomaz, J.-M. 2005 Global instabilities in spatially developing flows: non-normality and nonlinearity. Annu. Rev. Fluid Mech. 37, 357392.Google Scholar
Cortelezzi, L. & Karagozian, A. R. 2001 On the formation of the counter-rotating vortex pair in transverse jets. J. Fluid Mech. 446, 347373.Google Scholar
Davitian, J. 2008 Exploration and controlled excitation of transverse jet shear layer instabilities. PhD thesis, University of California, Department of Mechanical and Aerospace Engineering, Los Angeles, CA.Google Scholar
Davitian, J., Hendrickson, C., Getsinger, D., M'Closkey, R. T. & Karagozian, A. R. 2010 Strategic control of transverse jet flows. AIAA J. (to appear).Google Scholar
Fric, T. F. & Roshko, A. 1994 Vortical structure in the wake of a transverse jet. J. Fluid Mech. 279, 147.Google Scholar
Hallberg, M. P. & Strykowski, P. J. 2008 Open-loop control of fully nonlinear self-excited oscillations. Phys. Fluids 20, 041703.CrossRefGoogle Scholar
Hammond, D. & Redekopp, L. 1997 Global dynamics of symmetric and asymmetric wakes. J. Fluid Mech. 331, 231260.Google Scholar
Ho, C. M. & Huerre, P. 1984 Perturbed free shear layers. Annu. Rev. Fluid Mech. 16, 365424.Google Scholar
Huerre, P. & Monkewitz, P. A. 1990 Local and global instabilities in spatially developing flows. Annu. Rev. Fluid Mech. 22, 473537.Google Scholar
Juniper, M. P., Li, L. K. B. & Nichols, J. W. 2009 Forcing of self-excited round jet diffusion flames. Proc. Combust. Inst. 32, 11911198.Google Scholar
Kamotani, Y. & Greber, I. 1972 Experiments on a turbulent jet in a cross flow. AIAA J. 10, 14251429.Google Scholar
Karagozian, A. R. 1986 An analytical model for the vorticity associated with a transverse jet. AIAA J. 24, 429436.CrossRefGoogle Scholar
Kelly, R. E. & Alves, L. S. de B. 2008 A uniformly valid asymptotic solution for a transverse jet and its linear stability analysis. Phil. Trans. R. Soc. Lond. A 366, 27292744.Google Scholar
Kelso, R. M., Lim, T. T. & Perry, A. E. 1996 An experimental study of round jets in cross-flow. J. Fluid Mech. 306, 111144.CrossRefGoogle Scholar
Kelso, R. & Smits, A. 1995 Horseshoe vortex systems resulting from the interaction between a laminar boundary layer and a transverse jet. Phys. Fluids 7, 153158.CrossRefGoogle Scholar
Kuzo, D. M. 1995 An experimental study of the turbulent transverse jet. PhD thesis, California Institute of Technology, Pasadena, CA.Google Scholar
Kyle, D. M. & Sreenivasan, K. R. 1993 The instability and breakdown of a round variable-density jet. J. Fluid Mech. 249, 619664.CrossRefGoogle Scholar
Margason, R. J. 1993 Fifty years of jet in cross flow research. AGARD-CP-534 1, 1141.Google Scholar
M'Closkey, R. T., King, J., Cortelezzi, L. & Karagozian, A. R. 2002 The actively controlled jet in crossflow. J. Fluid Mech. 452, 325335.CrossRefGoogle Scholar
Megerian, S., Davitian, J., Alves, L. S. de B. & Karagozian, A. R. 2007 Transverse jet shear-layer instabilities. Part 1. Experimental studies. J. Fluid Mech. 593, 93129.Google Scholar
Monkewitz, P. A., Bechert, D. W., Barsikow, B. & Lehmann, B. 1990 Self-excited oscillations and mixing in a heated round jet. J. Fluid Mech. 213, 611639.Google Scholar
Moussa, Z. M., Trischka, J. W. & Eskinazi, S. 1977 The nearfield in the mixing of a round jet with a cross-stream. J. Fluid Mech. 80, 4980.Google Scholar
Muppidi, S. & Mahesh, K. 2007 Direct numerical simulation of round turbulent jets in crossflow. J. Fluid Mech. 574, 5984.CrossRefGoogle Scholar
Pier, B. 2003 Open-loop control of absolutely unstable domains. Proc. R. Soc. Lond. A 459 (2033), 11051115.Google Scholar
Provansal, M., Mathis, C. & Boyer, L. 1987 Benard-von Karman instability: transient and forced regimes. J. Fluid Mech. 182, 122.Google Scholar
Shapiro, S., King, J., M'Closkey, R. T. & Karagozian, A. R. 2006 Optimization of controlled jets in crossflow. AIAA J. 44, 12921298.Google Scholar
Smith, S. H. & Mungal, M. G. 1998 Mixing, structure and scaling of the jet in crossflow. J. Fluid Mech. 357, 83122.CrossRefGoogle Scholar
Sreenivasan, K. R., Raghu, S. & Kyle, D. 1989 Absolute instability in variable density round jets. Exp. Fluids 7 (5), 309317.CrossRefGoogle Scholar
Strykowski, P. J. & Niccum, D. L. 1991 The stability of countercurrent mixing layers in circular jets. J. Fluid Mech. 227, 309343.Google Scholar
Strykowski, P. J. & Niccum, D. L. 1992 The influence of velocity and density ratio on the dynamics of spatially developing mixing layers. Phys. Fluids A 4 (4), 770781.Google Scholar
Yuan, L. L. & Street, R. L. 1998 Trajectory and entrainment of a round jet in crossflow. Phys. Fluids 10, 23232335.Google Scholar
Ziefle, J. & Kleiser, L. 2009 Large-eddy simulation of a round jet in crossflow. AIAA J. 47 (5), 11581172.Google Scholar