Hostname: page-component-7c8c6479df-xxrs7 Total loading time: 0 Render date: 2024-03-18T07:57:07.670Z Has data issue: false hasContentIssue false

Experiments on the flow past a circular cylinder at very high Reynolds number

Published online by Cambridge University Press:  28 March 2006

Anatol Roshko
Affiliation:
Guggenheim Aeronautical Laboratory, California Institute of Technology, Pasadena, California

Abstract

Measurements on a large circular cylinder in a pressurized wind tunnel at Reynolds numbers from 106 to 107 reveal a high Reynolds number transition in which the drag coefficient increases from its low supercritical value to a value 0.7 at R = 3.5 × 106 and then becomes constant. Also, for R > 3.5 × 106, definite vortex shedding occurs, with Strouhal number 0.27.

Type
Research Article
Copyright
© 1961 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, H. J. & Vincenti, W. G. 1944 Wall interference in a two-dimensional-flow wind tunnel, with consideration of the effect of compressibility. Nat. Adv. Comm. Aero., Wash., Rep. 782.
Bursnall, W. J. & Loftin, L. K. 1951 Experimental investigation of localized regions of laminar boundary layer separation. Nat. Adv. Comm. Aero., Wash., Tech. Note 2338.
Delany, N. K. & Sorensen, N. E. 1953 Low-speed drag of cylinders of various shapes. Nat. Adv. Comm. Aero., Wash., Tech. Note 3038.
Dryden, H. L. & Hill, G. C. 1930 Wind pressure on circular cylinders and chimneys. Bur. Stand. J. Res., Wash., 5, 653–93.Google Scholar
Eppler, R. 1954 Beiträge zu Theorie und Anwendung der unstetigen Strömungen. J. Rational Tech. Anal. 3, 591644.Google Scholar
Fage, A. & Falkner, V. M. 1931 The flow around a circular cylinder. Aero. Res. Counc., Lond., Rep. and Mem. no. 1369.
Flachsbart, O. 1929 From an article by H. Mutray 1932. Handb. Experimental-physik, 4, part 2 (Leipzig), 316.Google Scholar
Fung, Y. C. 1960 Fluctuating lift and drag acting on a cylinder in a flow at supereritical Reynolds numbers. J. Aero Space Sci. 27, 80114.Google Scholar
Kovasznay, L. S. G. 1949 Hot-wire investigation of the wake behind cylinders at low Reynolds numbers. Proc. Roy. Soc. A, 198, 17490.Google Scholar
Millikan, C. B. 1957 Advanced education and academic research in aeronauties. J. R. Aero. Soc. 61, 793808.Google Scholar
Pechstein, W. 1940 Der natürlichen Wind und seine Wirkung auf einen grösseren Kreiszylinder. Dissertation, Tech. Hochschule Hannover; reported by A. Pröll, 1942. Z. Ver. dtsch. Ing. 86, 2223.Google Scholar
Relf, E. F. & Simmons, L. F. G. 1924 The frequency of eddies generated by the motion of circular cylinders through a fluid. Aero. Res. Counc., Lond., Rep. and Mem. no. 917.
Ribner, H. S. & Etkin, B. 1958 Noise research in Canada. Proc. 1st Int. Congr. Aero. Sci., Madrid (publ. by Pergamon Press, London, 1959).
Roshko, A. 1954 On the drag and shedding frequency of bluff cylinders. Nat. Adr. Comm. Aero., Wash., Tech. Note 3169.
Roshko, A. 1955 On the wake and drag of bluff bodies. J. Aero. Sci. 22, 12432.Google Scholar
Wieselsberger, C. 1921 Neuero Feststellungen über die Gesetze des Flüssigkeits- und Luftwiderstands. Phys. Z. 22. 3218.Google Scholar