Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-26T08:41:13.774Z Has data issue: false hasContentIssue false

Streamwise vortices associated with the bursting phenomenon

Published online by Cambridge University Press:  19 April 2006

Ron F. Blackwelder
Affiliation:
Department of Aerospace Engineering, University of Southern California, Los Angeles
This research was performed while at the Max-Planck-Institut für Strömungsforschung, Göttingen.
Helmut Eckelmann
Affiliation:
Lehrstuhl für Angewandte Mechanik und Strömungsphysik, University of Göttingen

Abstract

The streamwise and spanwise velocity components and the gradients of these components normal to the wall were examined by using hot-film sensors and flush-mounted wall elements to study the vortex structures associated with the bursting phenomenon. Quadrant probability analysis and conditional sampling techniques indicated that pairs of counter-rotating streamwise vortices occur frequently in the wall region of a bounded turbulent shear flow. A streamwise momentum defect occurred between the vortices as low-speed fluid was ‘pumped’ away from the wall by the vortex pair. The defect region was long and narrow and possibly forms the low-speed streak as observed in visualization studies. The velocity defect was terminated by a strong acceleration followed by a high speed region.

Type
Research Article
Copyright
© 1979 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bakewell, H. P. & Lumley, J. L. 1967 Phys. Fluids 10, 1880.
Blackwelder, R. F. 1977 Phys. Fluids 20, S232.
Blackwelder, R. F. & Kaplan, R. E. 1976 J. Fluid Mech. 76, 89.
Blackwelder, R. F. & Eckelmann, H. 1977 Proc. EUROMECH 90, Nancy, France.
Blackwelder, R. F. & Eckelmann, H. 1978 Structure and Mechanism of Turbulence, Lecture Notes in Physics, p. 190. Springer.
Chen, C. H. P. & Blackwelder, R. F. 1978 J. Fluid Mech. 89, 1.
Corino, E. R. & Brodkey, R. S. 1969 J. Fluid Mech. 37, 1.
Corrsin, S. 1957 Symp. Naval Hydrodyn., Publ. 515, NAS-NRC 373.
Eckelmann, H. 1974 J. Fluid Mech. 65, 439.
Grant, H. L. 1958 J. Fluid Mech. 4, 149.
Gupta, A. K., Laufer, J. & Kaplan, R. E. 1971 J. Fluid Mech. 50, 493.
Kim, H. T., Kline, S. J. & Reynolds, W. O. 1971 J. Fluid Mech. 50, 133.
Klages, H. 1977 Max-Planck-Institut für Strömungsforschung Bericht 14/1977.
Kline, S. J. & Rundstadler, P. W. 1959 J. Fluid Mech. E 26, 166.
Kline, S. J., Reynolds, W. C., Schraub, F. A. & Rundstadler, P. W. 1967 J. Fluid Mech. 30, 741.
Kreplin, H. P. 1976 Experimentelle Untersuchungen der Langsschwankungen und der wandparallelen Querschwankungen der Geschwindigkeit in einer turbulenten Kanalströmung. Ph.D. thesis. Universität Göttingen.
Laufer, J. 1975 Ann. Rev. Fluid Mech. 7, 307.
Lee, M. K., Eckelmann, L. D. & Hanratty, T. J. 1974 J. Fluid Mech. 66, 17.
Lu, S. S. & Willmarth, W. W. 1973 J. Fluid Mech. 60, 481.
Narahari Rao, K., Narasimha, R. & Badri Narayanan, M. A. 1971 J. Fluid Mech. 54, 39.
Oldaker, D. K. & Tiederman, W. G. 1977 Phys. Fluids 20, S133.
Sirkar, K. K. & Hanratty, T. J. 1970 J. Fluid Mech. 44, 605.
Townsend, A. A. 1970 J. Fluid Mech. 41, 13.
Wallace, J. M., Eckelmann, H. & Brodkey, R. S. 1972 J. Fluid Mech. 54, 39.
Willmarth, W. W. 1975 Adv. Appl. Mech. 15, 159.