Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-27T01:22:19.363Z Has data issue: false hasContentIssue false

Lichen community change over a 15-year time period: effects of climate and pollution

Published online by Cambridge University Press:  08 January 2013

Marianne EVJU
Affiliation:
Norwegian Institute for Nature Research, Gaustadalléen 21, NO-0349 Oslo, Norway. Email: marianne.evju@nina.no
Inga E. BRUTEIG
Affiliation:
Norwegian Institute for Nature Research, P.O. Box 5685 Sluppen, NO-7485 Trondheim, Norway

Abstract

Over the last decades, levels of sulphur deposition from air pollution have been substantially reduced in Norway, whereas levels of nitrogen deposition have been stable or somewhat increased. In parallel, a clear trend of increasing annual temperatures, as well as precipitation, is evident. Human impact on natural ecosystems is predicted to reduce biodiversity at regional scales through facilitating a few generalist species at the expense of species with narrow habitat requirements. In this study, we investigate changes in community composition and the abundance of dominant lichen species on birch in subalpine forests over a 15-year period. The study is based on repeated measurements in five monitoring sites in Norway, representing regional gradients in temperature and precipitation as well as in deposition of nitrogen and sulphur compounds. Two dominant species are studied in particular; the generalist Hypogymnia physodes and the subalpine birch specialist Melanelia olivacea. The largest change in species composition was found in the site with the biggest reduction in sulphur deposition during the 15-year period, whereas the site with low precipitation and low pollution loads had small changes in species composition. The abundance of the generalist H. physodes increased in all sites and the specialist M. olivacea decreased in abundance, especially in sites with both high precipitation and heavy nitrogen deposition. Our study thus suggests that a warmer, humid climate is beneficial for the generalist H. physodes.

Type
Articles
Copyright
Copyright © British Lichen Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aas, W., Hjellbrekke, A., Hole, L. R. & Tørseth, K. (2008) Deposition of Major Inorganic Compounds in Norway 2002–2006. NILU OR 72/2008. Oslo: Norwegian Institute for Air Research.Google Scholar
Ahti, T. (1977) Lichens of the boreal coniferous zone. In Lichen Ecology (Seaward, M. R. D., ed.): 145181. London: Academic Press.Google Scholar
Aptroot, A. & van Herk, C. M. (2007) Further evidence of the effects of global warming on lichens, particularly those with Trentepohlia phycobionts. Environmental Pollution 146: 293298.CrossRefGoogle ScholarPubMed
Arft, A. M., Walker, M. D., Gurevitch, J., Alatalo, J. M., Bret-Harte, M. S., Dale, M., Diemer, M., Gugerli, F., Henry, G. H. R., Jones, M. H. et al. (1999) Responses of tundra plants to experimental warming: meta-analysis of the International Tundra Experiment. Ecological Monographs 69: 491511.Google Scholar
Baskin, Y. (1998) Winners and losers in a changing world. BioScience 48: 788792.CrossRefGoogle Scholar
Bergamini, A., Ungricht, S. & Hofmann, H. (2009) An elevational shift of cryophilous bryophytes in the last century – an effect of climate warming? Diversity and Distributions 15: 871879.Google Scholar
Bobbink, R., Hicks, K., Galloway, J., Spranger, T., Alkemade, R., Ashmore, M., Bustamante, M., Cinderby, S., Davidson, E., Dentener, F. et al. (2010) Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecological Applications 20: 3059.Google Scholar
Britton, A. J., Beale, C. M., Towers, W. & Hewison, R. L. (2009) Biodiversity gains and losses: evidence for homogenisation of Scottish alpine vegetation. Biological Conservation 142: 17281739.CrossRefGoogle Scholar
Cannone, N., Sgorbati, S. & Guglielmin, M. (2007) Unexpected impacts of climate change on alpine vegetation. Frontiers in Ecology and the Environment 5: 360364.Google Scholar
Choler, P., Michalet, R. & Callaway, R. M. (2001) Facilitation and competition on gradients in alpine plant communities. Ecology 82: 32953308.Google Scholar
Crawley, M. J. (2003) Statistical Computing. An Introduction to Data Analysis Using S-Plus. Chichester: Wiley.Google Scholar
Du Rietz, G. E. (1945) Om fattigbark- och rikbarksamhällen. Svensk Botanisk Tidsskrift 39: 147150.Google Scholar
Ellis, C. J. & Coppins, B. J. (2006) Contrasting functional traits maintain lichen epiphyte diversity in response to climate and autogenic succession. Journal of Biogeography 33: 16431656.Google Scholar
Ellis, C. J., Coppins, B. J., Dawson, T. P. & Seaward, M. R. D. (2007) Response of British lichens to climate change scenarios: trends and uncertainties in the projected impact for contrasting biogeographic groups. Biological Conservation 140: 217235.Google Scholar
Elmendorf, S. C., Henry, G. H. R., Hollister, R. D., Björk, R. G., Bjorkman, A. D., Callaghan, T. V., Siegwart Collier, L., Cooper, E. J., Cornelissen, J. H. C., Day, T. A. et al. (2012) Global assessment of experimental climate warming on tundra vegetation: heterogeneity over space and time. Ecology Letters 15: 164175.CrossRefGoogle ScholarPubMed
Esseen, P.-A. (1981) Host specificity and ecology of epiphytic macrolichens in some central Swedish spruce forests. Wahlenbergia 7: 7380.Google Scholar
Galloway, J. N., Dentener, F., Capone, D. G., Boyer, E. W., Howarth, R. W., Seitzinger, S. P., Asner, G. P., Cleveland, C. C., Green, P. A., Holland, E. A. et al. (2004) Nitrogen cycles: past, present and future. Biogeochemistry 70: 153226.Google Scholar
Geiser, L. H. & Neitlich, P. N. (2007) Pollution and climate gradients in Western Oregon and Washington indicated by epiphytic macrolichens. Environmental Pollution 145: 203218.Google Scholar
Gottfried, M., Pauli, H., Futschik, A., Akhalkatsi, M., Barančok, P., Alonso, J. L. B., Coldea, G., Dick, J., Erschbamer, B., Fernández Calzado, M. R. et al. (2012) Continent-wide response of mountain vegetation to climate change. Nature Climate Change 2: 111115.CrossRefGoogle Scholar
Guisan, A. & Theurillat, J. P. (2000) Equilibrium modeling of alpine plant distribution: how far can we go? Phytocoenologia 30: 353384.Google Scholar
Hauck, M. (2011) Site factors controlling epiphytic lichen abundance in northern coniferous forests. Flora 206: 8190.Google Scholar
Hawksworth, D. L. (2002) Bioindication: calibrated scales and their utility. In Monitoring With Lichens – Monitoring Lichens (Nimis, P. L., Scheidegger, C. & Wolseley, P. A., eds): 1120. Dordrecht: Kluwer Academic Publishers.Google Scholar
Heegaard, E. & Vandvik, V. (2004) Climate change affects the outcome of competitive interactions – an application of principal response curves. Oecologia 139: 459466.Google Scholar
Hickling, R., Roy, D. B., Hill, J. K., Fox, R. & Thomas, C. D. (2006) The distributions of a wide range of taxonomic groups are expanding polewards. Global Change Biology 12: 450455.Google Scholar
Hilmo, O., Holien, H., Hytteborn, H. & Ely-Aalstrup, H. (2009) Richness of epiphytic lichens in differently aged Picea abies plantations situated in the oceanic region of Central Norway. Lichenologist 41: 97108.CrossRefGoogle Scholar
Hole, L. R. & Tørseth, K. (2002) Deposition of Major Inorganic Compounds in Norway 1978–82 and 1997–2001: Status and Trends. NILU OR 61/2002. Oslo: Norwegian Institute for Air Research.Google Scholar
Holopainen, T. & Kärenlampi, L. (1985) Characteristic ultrastructural symptoms caused in lichens by experimental exposure to nitrogen compounds and fluorides. Annales Botanici Fennici 22: 333342.Google Scholar
Hultengren, S., Martinsson, P.-O. & Stenström, J. (1991) Lavar og luftförureningar. Naturvårdsverket Rapport 3967.Google Scholar
Insarov, G. E. & Schroeter, B. (2002) Lichen monitoring and climate change. In Monitoring With Lichens – Monitoring Lichens (Nimis, P. L., Scheidegger, C. & Wolseley, P. A., eds): 183201. Dordrecht: Kluwer Academic Publishers.Google Scholar
Insarov, G. E., Semenov, S. M. & Insarova, I. D. (1999) A system to monitor climate change with epilithic lichens. Environmental Monitoring and Assessment 55: 279298.Google Scholar
IPCC (2007) Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva: IPCC.Google Scholar
Johansson, P., Rydin, H. & Thor, G. (2007) Tree age relationships with epiphytic lichen diversity and lichen life history traits on ash in southern Sweden. Ecoscience 14: 8191.CrossRefGoogle Scholar
Kauppi, M. (1980) The influence of nitrogen-rich pollution components on lichens. Acta Universitas Ouloensis A101 Biologica 9: 125.Google Scholar
Klanderud, K. & Birks, H. J. B. (2003) Recent increases in species richness and shifts in altitudinal distributions of Norwegian mountain plants. Holocene 13: 16.CrossRefGoogle Scholar
Körner, C. (2003) Alpine Plant Life. Functional Plant Ecology of High Mountain Ecosystems. Berlin: Springer.Google Scholar
Kuusinen, M. (1996) Epiphyte flora and diversity on basal trunks of six old-growth forest tree species in southern and middle boreal Finland. Lichenologist 28: 443463.Google Scholar
Lenoir, J., Gegout, J. C., Marquet, P. A., de Ruffray, P. & Brisse, H. (2008) A significant upward shift in plant species optimum elevation during the 20th century. Science 320: 17681771.Google Scholar
McCune, B. & Grace, J. B. (2002) Analysis of Ecological Communities. Oregon: MjM Software Design.Google Scholar
McKinney, M. L. & Lockwood, J. L. (1999) Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends in Ecology & Evolution 14: 450453.Google Scholar
Nimis, P. L., Scheidegger, C. & Wolseley, P. (eds) (2002) Monitoring With Lichens – Monitoring Lichens. Dordrecht: Kluwer Academic Publishers.Google Scholar
Norwegian Meteorological Institute (2010). www.eklima.no Google Scholar
Økland, R. H. (1996) Are ordination and constrained ordination alternative or complementary strategies in general ecological studies? Journal of Vegetation Science 7: 289292.Google Scholar
Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O'Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H. & Wagner, H. (2011) Vegan: Community Ecology Package. R package version 2.0-2.Google Scholar
Parmesan, C. & Yohe, G. (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421: 3742.Google Scholar
Parolo, G. & Rossi, G. (2008) Upward migration of vascular plants following a climate warming trend in the Alps. Basic and Applied Ecology 9: 100107.Google Scholar
Pinheiro, J. & Bates, D. (2000) Mixed-effect Models in S and S-Plus. New York: Springer.Google Scholar
Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R. Development Core Team (2008) nlme: Linear and Nonlinear Mixed Effect Models. R package version 3.Google Scholar
R Development Core Team (2008) R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.Google Scholar
Santesson, R., Moberg, R., Nordin, A., Tønsberg, T. & Vitikainen, O. (2004) Lichen-forming and Lichenicolous Fungi of Fennoscandia. Uppsala: Museum of Evolution, Uppsala University.Google Scholar
Seaward, M. R. D. (2004) The use of lichens for environmental impact assessment. Symbiosis 37: 293305.Google Scholar
Søchting, U. (1999) Lichens as bioindicators of air pollution. Nordic Lichen Flora 1: 89.Google Scholar
Sonesson, M. (1989) Water, light and temperature relations of the epiphytic lichens Parmelia olivacea and Parmeliopsis ambigua in Northern Swedish Lapland. Oikos 56: 402415.Google Scholar
Sonesson, M., Osborne, C. & Sandberg, G. (1994) Epiphytic lichens as indicators of snow depth. Arctic and Alpine Research 26: 159165.Google Scholar
ter Braak, C. J. F. & Prentice, I. C. (1988) A theory of gradient analysis. Advances in Ecological Research 18: 271317.Google Scholar
van den Berg, L. J. L., Vergeer, P., Rich, T. C. G., Smart, S. M., Guest, D. & Ashmore, M. R. (2011) Direct and indirect effects of nitrogen deposition on species composition change in calcareous grasslands. Global Change Biology 17: 18711883.Google Scholar
van Herk, C. M., Aptroot, A. & van Dobben, H. F. (2002) Long-term monitoring in the Netherlands suggests that lichens respond to global warming. Lichenologist 34: 141154.Google Scholar
Vestreng, V., Myhre, G., Fagerli, H., Reis, S. & Tarrason, L. (2007) Twenty-five years of continuous sulphur dioxide emission reduction in Europe. Atmospheric Chemistry and Physics 7: 36633681.Google Scholar
Vitousek, P. M., Aber, J. D., Howarth, R. W., Likens, G. E., Matson, P. A., Schindler, D. W., Schlesinger, W. H. & Tilman, D. G. (1997) Human alteration of the global nitrogen cycle: sources and consequences. Ecological Applications 7: 737750.Google Scholar
Von Arb, C. & Brunold, C. (1990) Lichen physiology and air pollution. 1. Physiological responses of in situ Parmelia sulcata among air pollution zones within Biel, Switzerland. Canadian Journal of Botany 68: 3542.Google Scholar
Walker, M. D., Wahren, C. D., Hollister, R. D., Henry, G. H., Ahlquist, L. E., Alatalo, J. M., Bret-Harte, M. S., Calef, M. P., Callaghan, T. V., Carroll, A. B. et al. (2006) Plant community responses to experimental warming across the tundra biome. Proceedings of the National Academy of Sciences of the United States of America 103: 13421346.Google Scholar
Werth, S., Tommervik, H. & Elvebakk, A. (2005) Epiphytic macrolichen communities along regional gradients in northern Norway. Journal of Vegetation Science 16: 199208.Google Scholar
Will-Wolf, S., Geiser, L. H., Neitlich, P. N. & Reis, A. H. (2006) Forest lichen communities and environment – How consistent are relationships across scales? Journal of Vegetation Science 17: 171184.Google Scholar