Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-26T17:15:46.665Z Has data issue: false hasContentIssue false

Dynamics of the interaction between the parasitic isopod, Anilocra pomacentri, and the coral reef fish, Chromis nitida

Published online by Cambridge University Press:  06 April 2009

R. D. Adlard
Affiliation:
Department of Parasitology, The University of Queensland, Brisbane 4072, Australia
R. J. G. Lester
Affiliation:
Department of Parasitology, The University of Queensland, Brisbane 4072, Australia

Summary

Field and laboratory investigations into the effect of the parasitic isopod Anilocra pomacentri (Cymothoidae) on the population dynamics of the reef fish Chromis nitida (Pomacentridae) were carried Out at Heron Island, Great Barrier Reef, Australia. Fish carried a single adult parasite just posterior and dorsal to the eye either to the right or to the left of the midline. The adult parasite was overdispersed among fish on patch reefs (dispersion factor, k = 0·69). Sequential field observations on a single cohort of fish showed that parasites significantly depressed growth, reproduction, and survivor-ship. The von Bertalanffy growth coefficients (a measure of somatic growth) were 0·10 for parasitized fish compared with 0·17 for non-parasitized fish. Female fish carrying the parasite produced only 12% of the number of eggs produced by non-parasitized fish of the same size. In the field, the mortality of infected juvenile C. nitida (LCF 15–30 mm) was estimated to be at least 88% in the first 70 days after recruitment of the fish. The mortality of uninfected recruits over the same period was 66%. In laboratory trials, the mortality associated with the infection of juvenile fish by larval parasites ranged from 78% for small fish (mean LCF 15·0 mm) to 28% for larger fish (mean LCF 24·9 mm) within 4 days of experimental infection. This is one of the few studies that evaluates the effect of a parasite on a population of fish in the field.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, R. M. & Gordon, D. M. (1982). Processes influencing the distribution of parasite numbers within host populations with special emphasis on parasite-induced host mortalities. Parasitology 85, 373–98.CrossRefGoogle ScholarPubMed
Anderson, R. M. & May, R. M. (1978). Regulation and stability of host–parasite population interactions. I. Regulatory processes. Journal of Animal Ecology 47, 219–47.CrossRefGoogle Scholar
Anderson, R. M. & May, R. M. (1981). Population dynamics of microparasites and their invertebrate hosts. Philosophical Transactions of the Royal Society, Series B 291, 451524.Google Scholar
Bliss, C. I. & Fisher, R. A. (1953). Fitting the negative binomial distribution to biological data. Biometrics 9, 176200.CrossRefGoogle Scholar
Bruce, N. L. (1986). Australian Pleopodias Richardson, 1910, and Anilocra Leach, 1818 (Isopoda: Cymothoidae), crustacean parasites of marine fishes. Records of the Australian Museum 39, 85130.CrossRefGoogle Scholar
Bullar, J. F. (1876). The generative organs of the parasitic isopoda. Journal of Anatomy and Physiology 11, 118–28.Google ScholarPubMed
Burreson, E. M. & Zwerner, D. E. (1984). Juvenile summer flounder, Paralichthys dentatus, mortalities in the western Atlantic Ocean caused by the hemoflagellate Trypanosoma bullocki: evidence from field and experimental studies. Helgoländer Meeresuntersuchungen 37, 343–52.CrossRefGoogle Scholar
Connell, J. H. (1985). The consequences of variation in initial settlement vs. post-settlement mortality in rocky intertidal communities. Journal of Experimental Marine Biology and Ecology 93, 1145.CrossRefGoogle Scholar
Doherty, P. J. (1983). Tropical territorial damselfishes: is density limited by aggression or recruitment? Ecology 64, 176–90.CrossRefGoogle Scholar
Everhart, W. H. & Youngs, W. D. (1981). Principles of Fisheries Science, 2nd Edn.Ithaca, N.Y.: Comstock.Google Scholar
Fryer, G. (1968). A new parasitic isopod of the family Cymothoidae from clupeid fishes of Lake Tanganyika, a further Lake Tanganyika enigma (Lironeca enigmatica n. sp.). Journal of Zoology 156, 3543.CrossRefGoogle Scholar
Gordon, D. M. & Rau, M. E. (1982). Possible evidence for mortality induced by the parasite Apatemon gracilis in a population of brook sticklebacks (Culaea inconstans). Parasitology 84, 41–7.CrossRefGoogle Scholar
Holmes, J. C. (1982). Impact of infectious disease agents on the population growth and geographic distribution of animals. In Population Biology of Infectious Disease Agents (ed. Anderson, R. M. & May, R. M.), pp. 3751. Berlin: Springer.CrossRefGoogle Scholar
Hudson, P. J. (1986). The effect of a parasitic nematode on the breeding production of red grouse. Journal of Animal Ecology 55, 8592.CrossRefGoogle Scholar
Jones, G. P. (1987). Competitive interactions among adults and juveniles in a coral reef fish. Ecology 68, 1534–47.CrossRefGoogle Scholar
Krykhtin, M. L. (1951). Some notes on the effects of the parasitic isopod Livoneca amurensis on the stocks of Leuciscus waleckii in the Amur. Transactions, Amursk Ichthyological Expeditions 11, 1945–9.Google Scholar
Lanzing, W. J. R. & O'connor, P. F. (1975). Infestation of luderick (Girella tricuspidata) populations with parasitic isopods. Australian Journal of Marine and Freshwater Research 26, 355–61.CrossRefGoogle Scholar
Legrand, J. J. (1952). Contribution á l'etude expérimentale et statistique de la biologie d' Anilocra physodes L. Archives de Zoologie Expérimentale et Générale 89, 155.Google Scholar
Lester, R. J. G. (1977). An estimate of the mortality in a population of Perca flavescens owing to the trematode Diplostomum adamsi. Canadian Journal of Zoology 55, 288–92.CrossRefGoogle Scholar
Liley, N. R. (1968). The endocrine control of reproductive behaviour in the female guppy, Poecilia reticulata Peters. Animal Behaviour 16, 318–31.CrossRefGoogle ScholarPubMed
Maxwell, J. G. H. (1982). Infestation of the jack mackerel, Trachurus declivis (Jenyns), with the cymothoid isopod, Ceratothoa imbricatus (Fabricus), in south eastern Australian waters. Journal of Fish Biology 20, 341–9.CrossRefGoogle Scholar
May, R. M. (1983). Parasitic infections as regulators of animal populations. American Scientist 71, 3645.Google ScholarPubMed
May, R. M. & Anderson, R. M. (1978). Regulation and stability of host–parasite population interactions. Journal of Animal Ecology 47, 249–67.CrossRefGoogle Scholar
McVicar, A. H. (1981). An assessment of Ichthyophonus disease as a component of natural mortality in plaice populations in Scottish waters. International Council for the Exploration of the Sea, CM1981/G:49 mimeo.Google Scholar
Menzies, R. J., Bowman, T. E. & Alverson, F. G. (1955). Studies of the biology of the fish parasite Livoneca convexa Richardson (Crustacea, Isopoda, Cymothoidae). Wassman Journal of Biology 13, 277–95.Google Scholar
Robertson, D. R. (1984). Cohabitation of competing territorial damselfishes on a Caribbean coral reef. Ecology 65, 1121–35.CrossRefGoogle Scholar
Robertson, D. R. & Lassig, B. (1980). Spatial distribution patterns and coexistence of a group of territorial damselfishes from the Great Barrier Reef. Bulletin of Marine Science 30, 187203.Google Scholar
Romestand, M. B. (1979). Étude écophysiologique des parasitoses à Cymothoadiens. Annales de Parasitologie humaine et comparée (Paris) 54, 423–48.CrossRefGoogle Scholar
Romestand, M. B. & Trilles, J. P. (1976). Production d'une substance anticoagulante par les glandes exocrines céphalothoraciques des isopodes Cymothoidae Meinertia oestroides (Risso, 1826) et Anilocra physodes (L., 1758) (Isopoda, Flabellifera, Cymothoidae). Compte Rendu de l' Académie des Sciences, Paris 282, 663–5.Google ScholarPubMed
Romestand, M. B. & Trilles, J. P. (1979). Influence des cymothoadiens Meinertia oestroides, Meinertia parallela et Anilocra physodes (Crustacés, Isopodes; parasites de poissons) sur la croissance des poissons hˇtes Boops boops et Pagellus erythrinus (Sparidés). Zeitschrift für Parasitenkunde 59, 195202.CrossRefGoogle Scholar
Sadzikowski, M. R. & Wallace, D. C. (1974). The incidence of Lironeca ovalis (Say) (Crustacea, Isopoda) and its effects on the growth of white perch, Morone americana (Gmelin), in the Delaware River near Artificial Island. Chesapeake Science 15, 163–5.CrossRefGoogle Scholar
Sale, P. F. (1980). The ecology of fishes on coral reefs. Oceanography and Marine Biology: an Annual Review 18, 367421.Google Scholar
Scott, M. E. (1987). Regulation of mouse colony abundance by Heligmosomoides polygyrus. Parasitology 95, 111–24.CrossRefGoogle ScholarPubMed
Scott, M. E. & Dobson, A. (1989). The role of parasites in regulating host abundance. Parasitology Today 5, 176–83.CrossRefGoogle ScholarPubMed
Shulman, M. J. (1984). Resource limitation and recruitment patterns in a coral reef fish assemblage. Journal of Experimental Marine Biology and Ecology 74, 85109.CrossRefGoogle Scholar
Shulman, M. J. & Ogden, J. C. (1987). What controls tropical reef fish populations: recruitment or benthic mortality? An example in the Caribbean reef fish Haemulon flavolineatum. Marine Ecology – Progress Series 39, 233–42.CrossRefGoogle Scholar
Sindermann, C. J. (1958). An epizootic in Gulf of St.Lawrence fishes. Transactions of the North American Wildlife Conference 23, 349–60.Google Scholar
Sindermann, C. J. (1987). Effects of parasites on fish populations: practical considerations. International Journal for Parasitology 17, 371–82.CrossRefGoogle ScholarPubMed
Sokal, R. R. & Rohlf, F. J. (1981). Biometry, 2nd Edn.San Francisco: Freeman.Google Scholar
Szalai, A. J. & Dick, T. A. (1991). Role of predation and parasitism in growth and mortality of yellow perch in Dauphin Lake, Manitoba. Transactions of the American Fisheries Society 120, 739–51.2.3.CO;2>CrossRefGoogle Scholar
Trilles, J. P. (1964). A propos d'un fait particulier d'éthologie parasitaire chez les isopodes Cymothoidae: La relation de taille entre parasites et poissons. Note préliminaire. Vie et Milieu 15, 365–9.Google Scholar
Trilles, J. P. (1969). Recherches sur les isopodes ‘Cymothoidae’ des coˇtes françaises. Aperçu général et comparatif sur la bionomie et la sexualité de ces Crustacés. Bulletin de la Société Zoologique de France 94, 433–45.Google Scholar
Victor, B. C. (1983). Recruitment and population dynamics of a coral reef fish. Science 219, 419–20.CrossRefGoogle ScholarPubMed
Wardlaw, A. C. (1985). Practical Statistics for Experimental Biologists. Chichester: Wiley & Sons.Google Scholar
Weinstein, M. P. & Heck, K. L. (1977). Biology and host–parasite relationships of Cymothoa excisa (Isopoda, Cymothoidae) with three species of snappers (Lutjanidae) on the Caribbean coast of Panama. Fishery Bulletin 75, 876–7.Google Scholar
Williams, D. McB. (1980). Dynamics of the pomacentrid community on small patch reefs in One Tree lagoon (Great Barrier Reef). Bulletin of Marine Science 30, 159–70.Google Scholar