Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-16T02:06:30.127Z Has data issue: false hasContentIssue false

Non-existence of invariant circles

Published online by Cambridge University Press:  19 September 2008

John N. Mather
Affiliation:
Princeton University, Fine Hall, Princeton, NJ 08544, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The dynamical system associated to the difference equation

has been studied numerically by several authors. On the basis of numerical evidence, they conclude that there exists a number k0 ≈ 0.97 such that there are homotopically non-trivial invariant circles for |k|≤k0 and there are none for |k|>k0. In this note, we give a simple rigorous proof that there are none for |k|>.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1984

References

REFERENCES

[1]Aubry, Le Daeron, & André, . Classical ground states of a one-dimensional model for incommensurate structures. Preprint (1982).Google Scholar
[2]Benettin, G., Galgani, L. & Strelcyn, J.. Kolmogorov entropy and numerical experiments. Phys. Rev. A 14 (1976), p. 2338.CrossRefGoogle Scholar
[3]Birkhoff, G. D.. Surface transformations and their dynamical applications. Acta Math. 43 (1922), 1119. Reprinted in Collected Mathematical Papers, Vol. II, Amer. Math. Soc.: New York (1950), pp. 111–229.CrossRefGoogle Scholar
[4]Birkhoff, G. D.. Sur quelques courbes fermées remarquables. Bull Soc. Math. de France 60 (1932), 126. Reprinted in Collected Mathematical Papers, Vol. II, Amer. Math. Soc.: New York (1950), pp. 418–443.Google Scholar
[5]Chirikov, B. V.. A universal instability of many-dimensional oscillator systems. Physics Reports 52 (1979), 263379.CrossRefGoogle Scholar
[6]Fathi, A.. Une interprétation plus topologique de la démonstration du théoremè de Birkhoff. Appendix of [9].Google Scholar
[7]Greene, J. M.. A method for determining a stochastic transition. J. Math. Phys. 20 (1979), 11831201.CrossRefGoogle Scholar
[8]Hellemann, R. H. G. & Bountis, T.. Periodic solutions of arbitrary period, variational methods. In Stochastic Behaviour in Classical and Quantal Systems, (ed. Casati, G. and Ford, J.). Springer Verlag: New York (1979), p. 353.Google Scholar
[9]Herman, M.. Introduction à l'étude des courbes invariantes par les diffeomorphismes de l'anneau. Asterisque 103104 (1983).Google Scholar
[10]Mather, J.. Glancing billiards. Ergod. Th. & Dyn. Sys. 2 (1982), 397403.CrossRefGoogle Scholar
[11]Mather, J.. Non-existence of invariant circles. Preprint (1982).Google Scholar
[12]Powell, G. E. & Percival, J. C.. A spectral entropy method for distinguishing regular and irregular motion of Hamiltonian systems. J. Phys. A 12 (1979), p. 20532071.Google Scholar
[13]Titchmarsh, E. C.. The Theory of Functions, (2nd edition). Oxford Univ. Press: Oxford (1939).Google Scholar