Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-26T10:37:13.232Z Has data issue: false hasContentIssue false

Progress in Clinical Neurosciences: Stroke Recovery and Rehabilitation

Published online by Cambridge University Press:  02 December 2014

Robert Teasell*
Affiliation:
Department of Physical Medicine and Rehabilitation, St. Joseph's Health Care, Schulich School of Medicine, University of Western Ontario, London, ON, Canada
Nestor Bayona
Affiliation:
Department of Physical Medicine and Rehabilitation, St. Joseph's Health Care, Schulich School of Medicine, University of Western Ontario, London, ON, Canada
Katherine Salter
Affiliation:
Department of Physical Medicine and Rehabilitation, St. Joseph's Health Care, Schulich School of Medicine, University of Western Ontario, London, ON, Canada
Chelsea Hellings
Affiliation:
Department of Physical Medicine and Rehabilitation, St. Joseph's Health Care, Schulich School of Medicine, University of Western Ontario, London, ON, Canada
Jamie Bitensky
Affiliation:
Department of Physical Medicine and Rehabilitation, St. Joseph's Health Care, Schulich School of Medicine, University of Western Ontario, London, ON, Canada
*
Department of Physical Medicine and Rehabilitation, St. Joseph’s Health Care London - Parkwood Site, 801 Commissioner’s Road E., London, Ontario, N6C 5J1, Canada
Rights & Permissions [Opens in a new window]

Abstract:

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Background:

Recent literature has provided new insights into the role of rehabilitation in neurological recovery post-stroke. The present review combines results of animal and clinical research to provide a summary of published information regarding the mechanisms of neural recovery and impact of rehabilitation.

Methods:

Plasticity of the uninjured and post-stroke brain is examined to provide a background for the examination of brain reorganization and recovery following stroke.

Summary and Conclusions:

Recent research has confirmed many of the basic underpinnings of rehabilitation and provided new insight into the role of rehabilitation in neurological recovery. Recovery post stroke is dependent upon cortical reorganization, and therefore, upon the presence of intact cortex, especially in areas adjacent to the infarct. Exposure to stimulating and complex environments and involvement in tasks or activities that are meaningful to the individual with stroke serves to increase cortical reorganization and enhance functional recovery. Additional factors associated with neurological recovery include size of stroke lesion, and the timing and intensity of therapy.

Résumé:

RÉSUMÉ:

La littérature récente apporte un nouvel éclairage sur le rôle de la réadaptation dans la récupération neurologique après un accident vasculaire cérébral (AVC). Cette revue combine les résultats de la recherche animale et de la recherche clinique pour réaliser un sommaire de l’information publiée sur les mécanismes de la récupération nerveuse et l’impact de la réadaptation.

Méthodes:

Nous examinons la plasticité du cerveau non lésé après un accident vasculaire cérébral afin de mettre en contexte l’examen de la réorganisation cérébrale et de la récupération après un AVC.

Sommaire et Conclusions:

Des recherches récentes confirment plusieurs des principes de base de la réadaptation et fournissent un nouvel éclairage sur le rôle de la réadaptation dans la récupération neurologique. Après un AVC, la récupération dépend de la réorganisation corticale et donc de la présence d’un cortex intact, spécialement dans les zones adjacentes à l’infarctus. L’exposition à un environnement stimulant et complexe et la participation à des tâches ou à des activités qui sont significatives pour l’individu attaint d’un AVC servent à promouvoir la réorganisation corticale et à améliorer la récupération fonctionnelle. Plusieurs autres facteurs ont un impact sur la récupération neurologique, entre autres la taille de la lésion et le moment et l’intensité du traitement.

Type
Review Articles
Copyright
Copyright © The Canadian Journal of Neurological 2006

References

1. Turkstra, LS, Holland, AL, Bays, GA. The neuroscience of recovery and rehabilitation: what have we learned from animal research? Arch Phys Med Rehabil. 2003; 84(4):60412.CrossRefGoogle ScholarPubMed
2. Rockel, AJ, Hiorns, RW, Powell, TP. The basic uniformity in structure of the neocortex. Brain. 1980; 103(2):22144.Google Scholar
3. Kolb, B. Brain plasticity and behavior. New Jersey: Erlbaum Mahwah, 1995.Google Scholar
4. Hebb, DO. The Organization of Behavior: A neuropsychological theory. NY: New York: Wiley, 1949.Google Scholar
5. Kleim, JA, Lussnig, E, Schwarz, ER, Comery, TA, Greenough, WT. Synaptogenesis and Fos expression in the motor cortex of the adult rat after motor skill learning. J Neurosci. 1996; 16(14):452935.CrossRefGoogle ScholarPubMed
6. Diamond, MC, Krech, D, Rosenzweig, MR. The effects of an enriched environment on the histology of the rat cerebral cortex. J Comp Neurol. 1964; 123:11120.CrossRefGoogle ScholarPubMed
7. Greenough, WT, Hwang, HM, Gorman, C. Evidence for active synapse formation or altered postsynaptic metabolism in visual cortex of rats reared in complex environments. Proc Natl Acad Sci USA. 1985; 82(13):454952.Google Scholar
8. Rosenzweig, MR, Bennett, EL, Krech, D. Cerebral effects of environmental complexity and training among adult rats. J Comp Physiol Psychol. 1964; 57:4389.Google Scholar
9. Diamond, MC, Lindner, B, Raymond, A. Extensive cortical depth measurements and neuron size increases in the cortex of environmentally enriched rats. J Comp Neurol. 1967; 131: 35764.Google Scholar
10. Rosenzweig, MR, Krech, D, Bennett, EL, Diamond, MC. Effects of environmental complexity and training on brain chemistry and anatomy: a replication and extension. J Comp Physiol Psychol. 1962; 55:42937.Google Scholar
11. Bennett, EL, Diamond, MC, Krech, D, Rosenzweig, MR. Chemical and anatomical plasticity brain. Science. 1964; 146:6109.CrossRefGoogle ScholarPubMed
12. Globus, A, Rosenzweig, MR, Bennett, EL, Diamond, MC. Effects of differential experience on dendritic spine counts in rat cerebral cortex. J Comp Physiol Psychol. 1973; 82(2):17581.CrossRefGoogle ScholarPubMed
13. Turner, AM, Greenough, WT. Differential rearing effects on rat visual cortex synapses. I. Synaptic and neuronal density and synapses per neuron. Brain Res. 1985; 329(1-2):195203.Google Scholar
14. Volkmar, FR, Greenough, WT. Rearing complexity affects branching of dendrites in the visual cortex of the rat. Science. 1972; 176(42):11457.CrossRefGoogle ScholarPubMed
15. West, RW, Greenough, WT. Effect of environmental complexity on cortical synapses of rats: preliminary results. Behav Biol. 1972; 7(2):27984.CrossRefGoogle ScholarPubMed
16. Nudo, RJ, Milliken, GW. Reorganization of movement representations in primary motor cortex following focal ischemic infarcts in adult squirrel monkeys. J Neurophysiol. 1996; 75(5):21449.Google Scholar
17. Nudo, RJ, Milliken, GW, Jenkins, WM, Merzenich, MM. Use-dependent alterations of movement representations in primary motor cortex of adult squirrel monkeys. J Neurosci. 1996; 16(2):785807.CrossRefGoogle ScholarPubMed
18. Castro-Alamancos, MA, Borrel, J. Functional recovery of forelimb response capacity after forelimb primary motor cortex damage in the rat is due to the reorganization of adjacent areas of cortex. Neuroscience. 1995; 68(3):793805.Google Scholar
19. Kleim, JA, Barbay, S, Nudo, RJ. Functional reorganization of the rat motor cortex following motor skill learning. J Neurophysiol. 1998; 80(6):33215.CrossRefGoogle ScholarPubMed
20. Plautz, EJ, Milliken, GW, Nudo, RJ. Effects of repetitive motor training on movement representations in adult squirrel monkeys: role of use versus learning. Neurobiol Learn Mem. 2000; 74(1):2755.CrossRefGoogle ScholarPubMed
21. Kolb, B. Overview of cortical plasticity and recovery from brain injury. Phys Med Rehabil Clin N Am. 2003; 14 Suppl 1:S725, viii.Google Scholar
22. Penfield, W BE. Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain. 1937; 60: 389443.CrossRefGoogle Scholar
23. Elbert, T, Heim, S, Rockstroh, B. Neural plasticity and development. In: Nelson, CA LM, editor. Handbook of developmental cognitive neuroscience. Cambridge MA: MIT Press; 2001. p. 191204.Google Scholar
24. Humphrey, DR. Representation of movements and muscles within the primate precentral motor cortex: historical and current perspectives. Fed Proc. 1986; 45(12):268799.Google Scholar
25. Karni, A, Meyer, G, Rey-Hipolito, C, Jezzard, P, Adams, MM, Turner, R, et al. The acquisition of skilled motor performance: fast and slow experience-driven changes in primary motor cortex. Proc Natl Acad Sci USA. 1998; 95(3):8618.Google Scholar
26. Grafton, ST, Mazziotta, JC, Presty, S, Friston, KJ, Frackowiak, RS, Phelps, ME. Functional anatomy of human procedural learning determined with regional cerebral blood flow and PET. J Neurosci. 1992; 12(7):25428.CrossRefGoogle ScholarPubMed
27. Neumann-Haefelin, T, Witte, OW. Peri-infarct and remote excitability changes after transient middle cerebral artery occlusion. J Cereb Blood Flow Metab. 2000; 20(1):4552.Google Scholar
28. Liepert, J, Tegenthoff, M, Malin, JP. Changes of cortical motor area size during immobilization. Electroencephalogr Clin Neurophysiol. 1995; 97(6):3826.Google Scholar
29. Ramachandran, VS, Stewart, M, Rogers-Ramachandran, DC. Perceptual correlates of massive cortical reorganization. Neuroreport. 1992; 3(7):5836.Google Scholar
30. Aglioti, S, Cortese, F, Franchini, C. Rapid sensory remapping in the adult human brain as inferred from phantom breast perception. Neuroreport. 1994; 5(4):4736.Google Scholar
31. Elbert, T, Flor, H, Birbaumer, N, Knecht, S, Hampson, S, Larbig, W, et al. Extensive reorganization of the somatosensory cortex in adult humans after nervous system injury. Neuroreport. 1994; 5(18):25937.CrossRefGoogle ScholarPubMed
32. Halligan, PW, Marshall, JC, Wade, DT. Sensory disorganization and perceptual plasticity after limb amputation: a follow-up study. Neuroreport. 1994; 5(11):13415.Google Scholar
33. Yang, TT, Gallen, CC, Ramachandran, VS, Cobb, S, Schwartz, BJ, Bloom, FE. Noninvasive detection of cerebral plasticity in adult human somatosensory cortex. Neuroreport. 1994; 5(6):7014.Google Scholar
34. Pascual-Leone, A, Torres, F. Plasticity of the sensorimotor cortex representation of the reading finger in Braille readers. Brain. 1993; 116 (Pt 1):3952.Google Scholar
35. Elbert, T, Pantev, C, Wienbruch, C, Rockstroh, B, Taub, E. Increased cortical representation of the fingers of the left hand in string players. Science. 1995; 270(5234):3057.Google Scholar
36. Jorgensen, HS. The Copenhagen Stroke Study Experience. J Stroke Cerebrovasc Dis. 1996; 6(1):516.Google Scholar
37. Jorgensen, HS, Nakayama, H, Raaschou, HO, Pedersen, PM, Houth, J, Olsen, TM. Functional and neurological outcome of stroke and the relation to stroke severity and type, stroke unit treatment, body temperature, age, and other risk factors: The Copenhagen Stroke Study. Top Stroke Rehabil. 2000; 6(4):119.Google Scholar
38. Jorgensen, HS, Nakayama, H, Raaschou, HO, Vive-Larsen, J, Stoier, M, Olsen, TS. Outcome and time course of recovery in stroke. Part I: Outcome. The Copenhagen Stroke Study. Arch Phys Med Rehabil. 1995; 76(5):399405.Google Scholar
39. Dombovy, ML, Sandok, BA, Basford, JR. Rehabilitation for stroke: a review. Stroke 1986; 17(3):3639.Google Scholar
40. Astrup, J, Siesjo, BK, Symon, L. Thresholds in cerebral ischemia - the ischemic penumbra. Stroke. 1981; 12(6):7235.Google Scholar
41. Wade, DT, Wood, VA, Hewer, RL. Recovery after stroke--the first 3 months. J Neurol Neurosurg Psychiatry. 1985; 48(1):713.Google Scholar
42. Jorgensen, HS, Nakayama, H, Raaschou, HO, Vive-Larsen, J, Stoier, M, Olsen, TS. Outcome and time course of recovery in stroke. Part II: Time course of recovery. The Copenhagen Stroke Study. Arch Phys Med Rehabil. 1995; 76(5):40612.Google Scholar
43. Green, JB. Brain reorganization after stroke. Top Stroke Rehabil. 2003; 10(3):120.Google Scholar
44. Nudo, RJ. Adaptive plasticity in motor cortex: implications for rehabilitation after brain injury. J Rehabil Med. 2003; Suppl 41:S710.Google Scholar
45. Kolb, B, Gibb, R. Environmental enrichment and cortical injury: behavioral and anatomical consequences of frontal cortex lesions. Cereb Cortex. 1991; 1(2):18998.Google Scholar
46. Kolb, B, Forgie, M, Gibb, R, Gorny, G, Rowntree, S. Age, experience and the changing brain. Neurosci Biobehav Rev. 1998; 22(2):14359.Google Scholar
47. Johansen-Berg, H, Dawes, H, Guy, C, Smith, SM, Wade, DT, Matthews, PM. Correlation between motor improvements and altered fMRI activity after rehabilitative therapy. Brain. 2002; 125(Pt 12):273142.CrossRefGoogle ScholarPubMed
48. Cramer, SC, Mark, A, Barquist, K, Nhan, H, Stegbauer, KC, Price, R, et al. Motor cortex activation is preserved in patients with chronic hemiplegic stroke. Ann Neurol. 2002; 52(5):60716.Google Scholar
49. Biernaskie, J, Chernenko, G, Corbett, D. Efficacy of rehabilitative experience declines with time after focal ischemic brain injury. J Neurosci. 2004; 24(5):124554.Google Scholar
50. Schallert, T, Fleming, SM, Woodlee, MT. Should the injured and intact hemispheres be treated differently during the early phases of physical restorative therapy in experimental stroke or parkinsonism? Phys Med Rehabil Clin N Am. 2003; 14 Suppl 1:S2746.Google Scholar
51. Turton, A, Wroe, S, Trepte, N, Fraser, C, Lemon, RN. Contralateral and ipsilateral EMG responses to transcranial magnetic stimulation during recovery of arm and hand function after stroke. Electroencephalogr Clin Neurophysiol. 1996; 101(4):31628.Google Scholar
52. Netz, J, Lammers, T, Homberg, V. Reorganization of motor output in the non-affected hemisphere after stroke. Brain. 1997; 120 (Pt 9):157986.CrossRefGoogle ScholarPubMed
53. Jenkins, WM, Merzenich, MM. Reorganization of neocortical representations after brain injury: a neurophysiological model of the bases of recovery from stroke. Prog Brain Res. 1987; 71: 24966.Google Scholar
54. Pons, TP, Garraghty, PE, Mishkin, M. Lesion-induced plasticity in the second somatosensory cortex of adult macaques. Proc Natl Acad Sci USA. 1988; 85(14):527981.Google Scholar
55. Doetsch, GS, Johnston, KW, Hannan, CJ Jr. Physiological changes in the somatosensory forepaw cerebral cortex of adult raccoons following lesions of a single cortical digit representation. Exp Neurol. 1990; 108(2):16275.Google Scholar
56. Coq, JO, Xerri, C. Tactile impoverishment and sensorimotor restriction deteriorate the forepaw cutaneous map in the primary somatosensory cortex of adult rats. Exp Brain Res. 1999; 129(4):51831.Google Scholar
57. Wikstrom, H, Roine, RO, Aronen, HJ, Salonen, O, Sinkkonen, J, Ilmoniemi, RJ, et al. Specific changes in somatosensory evoked magnetic fields during recovery from sensorimotor stroke. Ann Neurol. 2000; 47(3):35360.3.0.CO;2-R>CrossRefGoogle ScholarPubMed
58. Rapp, B, Hendel, SK, Medina, J. Remodeling of somotasensory hand representations following cerebral lesions in humans. Neuroreport. 2002; 13(2):20711.Google Scholar
59. Aglioti, S, Smania, N, Peru, A. Frames of reference for mapping tactile stimuli in brain-damaged patients. J Cogn Neurosci. 1999; 11(1):6779.Google Scholar
60. Teasell, R, Foley, N, Salter, K, Bhogal, SK, Jutai, J, Speechley, M. Evidence-based review of stroke rehabilitation. London, Ontario: 2005.Google Scholar
61. Sze, FK, Wong, E, Or, KK, Lau, J, Woo, J. Does acupuncture improve motor recovery after stroke? A meta-analysis of randomized controlled trials. Stroke. 2002; 33(11):260419.CrossRefGoogle ScholarPubMed
62. Kolb, B, Gibb, R, Gorny, G. Cortical plasticity and the development of behavior after early frontal cortical injury. Dev Neuropsychol. 2000; 18(3):42344.CrossRefGoogle ScholarPubMed
63. Anderson, TP, Baldridge, M, Ettinger, MG. Quality of care for completed stroke without rehabilitation: evaluation by assessing patient outcomes. Arch Phys Med Rehabil. 1979; 60(3):1037.Google ScholarPubMed
64. Frost, SB, Barbay, S, Friel, KM, Plautz, EJ, Nudo, RJ. Reorganization of remote cortical regions after ischemic brain injury: a potential substrate for stroke recovery. J Neurophysiol. 2003; 89(6): 320514.Google Scholar
65. Garraway, M. Stroke rehabilitation units: concepts, evaluation, and unresolved issues. Stroke. 1985; 16(2):17881.Google Scholar
66. Garraway, WM, Akhtar, AJ, Smith, DL, Smith, ME. The triage of stroke rehabilitation. J Epidemiol Community Health. 1981; 35(1):3944.Google Scholar
67. Carey, RG, Seibert, JH. Integrating program evaluation, quality assurance, and marketing for inpatient rehabilitation. Rehabil Nurs. 1988; 13(2):6670.Google Scholar
68. Asberg, KH, Nydevik, I. Early prognosis of stroke outcome by means of Katz Index of activities of daily living. Scand J Rehabil Med. 1991; 23(4):18791.Google Scholar
69. Alexander, MP. Stroke rehabilitation outcome. A potential use of predictive variables to establish levels of care. Stroke. 1994; 25(1):12834.Google Scholar
70. Hallett, M. Plasticity of the human motor cortex and recovery from stroke. Brain Res Rev. 2001; 36(2-3):16974.Google Scholar
71. Brown, AW, Marlowe, KJ, Bjelke, B. Age effect on motor recovery in a post-acute animal stroke model. Neurobiol Aging. 2003; 24(4):60714.Google Scholar
72. Schauwecker, PE, Cheng, HW, Serquinia, RM, Mori, N, McNeill, TH. Lesion-induced sprouting of commissural/associational axons and induction of GAP-43 mRNA in hilar and CA3 pyramidal neurons in the hippocampus are diminished in aged rats. J Neurosci. 1995; 15(3 Pt 2):246270.Google Scholar
73. Popa-Wagner, A, Schroder, E, Schmoll, H, Walker, LC, Kessler, C. Upregulation of MAP1B and MAP2 in the rat brain after middle cerebral artery occlusion: effect of age. J Cereb Blood Flow Metab. 1999; 19(4):42534.Google Scholar
74. Whittemore, SR, Nieto-Sampedro, M, Needels, DL, Cotman, CW. Neuronotrophic factors for mammalian brain neurons: injury induction in neonatal, adult and aged rat brain. Brain Res. 1985; 352(2):16978.Google Scholar
75. Scheff, SW, Bernardo, LS, Cotman, CW. Decrease in adrenergic axon sprouting in the senescent rat. Science. 1978; 202(4369):7758.CrossRefGoogle ScholarPubMed
76. Cotman, CW, Anderson, KJ. Synaptic plasticity and functional stabilization in the hippocampal formation: possible role in Alzheimer’s disease. Adv Neurol. 1988; 47:31335.Google Scholar
77. Nakayama, H, Jorgensen, HS, Raaschou, HO, Olsen, TS. Compensation in recovery of upper extremity function after stroke: the Copenhagen Stroke Study. Arch Phys Med Rehabil. 1994; 75(8):8527.Google Scholar
78. Pohjasvaara, T, Erkinjuntti, T, Vataja, R, Kaste, M. Dementia three months after stroke. Baseline frequency and effect of different definitions of dementia in the Helsinki Stroke Aging Memory Study (SAM) cohort. Stroke. 1997; 28(4):78592.Google Scholar
79. Kugler, C, Altenhoner, T, Lochner, P, Ferbert, A. Does age influence early recovery from ischemic stroke? A study from the Hessian Stroke Data Bank. J Neurol. 2003; 250(6):67681.Google Scholar
80. Bagg, S, Pombo, AP, Hopman, W. Effect of age on functional outcomes after stroke rehabilitation. Stroke. 2002; 33(1):17985.Google Scholar
81. Gladstone, DJ, Black, SE, Hakim, AM. Toward wisdom from failure: lessons from neuroprotective stroke trials and new therapeutic directions. Stroke. 2002; 33(8):212336.CrossRefGoogle ScholarPubMed
82. Nudo, RJ, Friel, KM. Cortical plasticity after stroke: implications for rehabilitation. Rev Neurol (Paris). 1999; 155(9):7137.Google Scholar
83. Nudo, RJ, Plautz, EJ, Frost, SB. Role of adaptive plasticity in recovery of function after damage to motor cortex. Muscle Nerve 2001; 24(8):100019.Google Scholar
84. Dombovy, ML, Basford, JR, Whisnant, JP, Bergstralh, EJ. Disability and use of rehabilitation services following stroke in Rochester, Minnesota, 1975-1979. Stroke. 1987; 18(5):8306.Google Scholar
85. Stroke Unit Trialists’ Collaboration. Organized inpatient (stroke unit) care for stroke. Cochrane Review. In: Cochrane Library [1]. 2003.Google Scholar
86. Biernaskie, J, Corbett, D. Enriched rehabilitative training promotes improved forelimb motor function and enhanced dendritic growth after focal ischemic injury. J Neurosci. 2001; 21(14):527280.Google Scholar
87. Risedal, A, Mattsson, B, Dahlqvist, P, Nordborg, C, Olsson, T, Johansson, BB. Environmental influences on functional outcome after a cortical infarct in the rat. Brain Res Bull. 2002; 58(3): 31521.Google Scholar
88. Rosenzweig, MR. Effects of environment on development of brain and of behavior. In: Tobach, E, Aronson, LR, Shaw, ES, editors. The biopsychology of development. New York: Academic Press; 1971.Google Scholar
89. Noorani, HZ, Brady, B, McGahan, L, Teasell, R, Skidmore, B, Doherty, TJ. Stroke rehabilitation services: systematic reviews of the clinical and economic evidence. Ottawa: Canadian Coordinating Office for Health Technology Assessment; 2003. Technology report no. 35.Google Scholar
90. Bernhardt, J, Dewey, H, Thrift, A, Donnan, G. Inactive and alone: physical activity within the first 14 days of acute stroke unit care. Stroke. 2004; 35(4):10059.Google Scholar
91. Wade, DT, Skilbeck, CE, Hewer, RL, Wood, VA. Therapy after stroke: amounts, determinants and effects. Int Rehabil Med. 1984; 6(3):10510.Google Scholar
92. Lincoln, NB, Willis, D, Philips, SA, Juby, LC, Berman, P. Comparison of rehabilitation practice on hospital wards for stroke patients. Stroke. 1996; 27(1):1823.Google Scholar
93. Keith, RA, Cowell, KS. Time use of stroke patients in three rehabilitation hospitals. Soc Sci Med. 1987; 24(6):52933.Google Scholar
94. Kozlowski, DA, James, DC, Schallert, T. Use-dependent exaggeration of neuronal injury after unilateral sensorimotor cortex lesions. J Neurosci. 1996; 16(15):477686.Google Scholar
95. Schallert, T, Kozlowski, DA, Humm, JL, Cocke, RR. Use-dependent structural events in recovery of function. Adv Neurol. 1997; 73:22938.Google Scholar
96. Johansson, BB. Brain plasticity and stroke rehabilitation. The Willis lecture. Stroke. 2000; 31(1):22330.Google Scholar
97. Jones, TA, Schallert, T. Use-dependent growth of pyramidal neurons after neocortical damage. J Neurosci. 1994; 14(4):214052.CrossRefGoogle ScholarPubMed
98. Schallert, T, Jones, TA. “Exuberant” neuronal growth after brain damage in adult rats: the essential role of behavioral experience. J Neural Transplant Plast. 1993; 4(3):1938.Google Scholar
99. Whitall, J, McCombe, WS, Silver, KH, Macko, RF. Repetitive bilateral arm training with rhythmic auditory cueing improves motor function in chronic hemiparetic stroke. Stroke. 2000; 31(10):23905.Google Scholar
100. Hayes, SH, Carroll, SR. Early intervention care in the acute stroke patient. Arch Phys Med Rehabil. 1986; 67(5):31921.Google Scholar
101. Cifu, DX, Stewart, DG. Factors affecting functional outcome after stroke: a critical review of rehabilitation interventions. Arch Phys Med Rehabil. 1999; 80 5 Suppl 1:S359.Google Scholar
102. Anderson, TP, Bourestom, N, Greenberg, FR, Hildyard, VG. Predictive factors in stroke rehabilitation. Arch Phys Med Rehabil. 1974; 55(12):54553.Google Scholar
103. Bourestom, NC. Predictors of long-term recovery in cerebrovascular disease. Arch Phys Med Rehabil. 1967; 48(8):4159.Google Scholar
104. Shah, S, Vanclay, F, Cooper, B. Predicting discharge status at commencement of stroke rehabilitation. Stroke. 1989; 20(6): 7669.Google Scholar
105. Paolucci, S, Antonucci, G, Grasso, MG, Morelli, D, Troisi, E, Coiro, P, et al. Early versus delayed inpatient stroke rehabilitation: a matched comparison conducted in Italy. Arch Phys Med Rehabil. 2000; 81(6):695700.Google Scholar
106. Salter, K, Jutai, J, Hartley, M, Foley, N, Bhogal, S, Bayona, N, et al. Impact of early vs delayed admission to rehabilitation on functional outcomes in persons with stroke. J Rehabil Med. 2006; 38:11317.Google Scholar
107. Ancheta, J, Husband, M, Law, D, Reding, M. Initial functional independence measure score and interval post stroke help assess outcome, length of hospitalization and quality of care. Neurorehabil Neural Repair. 2000; 14:12734.Google Scholar
108. Rossi, PW, Forer, S, Wiechers, D. Effective rehabilitation for patients with stroke: analysis of entry, functional gain and discharge to community. J Neurol Rehabil. 1997; 11:2733.Google Scholar
109. Musicco, M, Emberti, L, Nappi, G, Galtagirone, C. Early and long-term outcome of rehabilitation in stroke patients: the role of patient characteristics, time of initiation and duration of interventions. Arch Phys Med Rehabil. 2003; 84:5518.Google Scholar
110. Feeney, DM, Gonzalez, A, Law, WA. Amphetamine, haloperidol, and experience interact to affect rate of recovery after motor cortex injury. Science. 1982; 217(4562):8557.Google Scholar
111. Feeney, DM, Sutton, RL. Pharmacotherapy for recovery of function after brain injury. Crit Rev Neurobiol. 1987; 3(2):13597.Google Scholar
112. Feeney, DM, Sutton, RL. Catecholamines and recovery of function after brain damage. In: Stein, DG, Sabel, BA, editors. Pharmacological approaches to the treatment of brain and spinal cord injury. New York: Plenum Press; 1988. p. 12142.Google Scholar
113. Taub, E. Somatosensory deafferentation research with monkeys: implications for rehabilitation medicine. In: Ince, LP, editor. Behavioral psychology in rehabilitation medicine: clinical applications. New York: Williams & Wilkins; 1980. p. 371401.Google Scholar
114. Friel, KM, Heddings, AA, Nudo, RJ. Effects of postlesion experience on behavioral recovery and neurophysiologic reorganization after cortical injury in primates. Neurorehabil Neural Repair. 2000; 14(3):18798.Google Scholar
115. DeBow, SB, Davies, ML, Clarke, HL, Colbourne, F. Constraint-induced movement therapy and rehabilitation exercises lessen motor deficits and volume of brain injury after striatal hemorrhagic stroke in rats. Stroke. 2003; 34(4):10216.Google Scholar
116. Langhorne, P, Wagenaar, R, Partridge, C. Physiotherapy after stroke: more is better? Physiother Res Int. 1996; 1(2):7588.Google Scholar
117. Kwakkel, G, Wagenaar, RC, Koelman, TW, Lankhorst, GJ, Koetsier, JC. Effects of intensity of rehabilitation after stroke. A research synthesis. Stroke. 1997; 28(8):15506.Google Scholar
118. Kalra, L. Does age affect benefits of stroke unit rehabilitation? Stroke. 1994; 25(2):34651.Google Scholar
119. Bhogal, SK, Teasell, R, Speechley, M. Intensity of aphasia therapy, impact on recovery. Stroke. 2003; 34(4):98793.Google Scholar
120. Kwakkel, G, Wagenaar, RC, Twisk, JW, Lankhorst, GJ, Koetsier, JC. Intensity of leg and arm training after primary middle-cerebral-artery stroke: a randomised trial. Lancet. 1999; 354(9174):1916.Google Scholar
121. Hanlon, RE. Motor learning following unilateral stroke. Arch Phys Med Rehabil. 1996; 77(8):8115.Google Scholar
122. Sunderland, A, Tinson, DJ, Bradley, EL, Fletcher, D, Langton, HR, Wade, DT. Enhanced physical therapy improves recovery of arm function after stroke. A randomised controlled trial. J Neurol Neurosurg Psychiatry. 1992; 55(7):5305.CrossRefGoogle ScholarPubMed
123. Volpe, BT, Krebs, HI, Hogan, N, Edelsteinn, L, Diels, CM, Aisen, ML. Robot training enhanced motor outcome in patients with stroke maintained over 3 years. Neurology. 1999; 53(8):18746.Google Scholar
124. Rodgers, H, Mackintosh, J, Price, C, Wood, R, McNamee, P, Fearon, T, et al. Does an early increased-intensity interdisciplinary upper limb therapy programme following acute stroke improve outcome? Clin Rehabil. 2003; 17(6):57989.Google Scholar
125. Lincoln, NB, Parry, RH, Vass, CD. Randomized, controlled trial to evaluate increased intensity of physiotherapy treatment of arm function after stroke. Stroke. 1999; 30(3):5739.Google Scholar
126. Feys, HM, De Weerdt, WJ, Selz, BE, Cox Steck, GA, Spichiger, R, Vereeck, LE, et al. Effect of a therapeutic intervention for the hemiplegic upper limb in the acute phase after stroke: a single-blind, randomized, controlled multicenter trial. Stroke. 1998; 29(4):78592.Google Scholar
127. Barreca, S, Wolf, SL, Fasoli, S, Bohannon, R. Treatment interventions for the paretic upper limb of stroke survivors: a critical review. Neurorehabil Neural Repair. 2003; 17(4):2206.Google Scholar
128. Remple, MS, Bruneau, RM, VandenBerg, PM, Goertzen, C, Kleim, JA. Sensitivity of cortical movement representations to motor experience: evidence that skill learning but not strength training induces cortical reorganization. Behav Brain Res. 2001; 123(2):13341.Google Scholar
129. Kleim, JA, Barbay, S, Cooper, NR, Hogg, TM, Reidel, CN, Remple, MS, et al. Motor learning-dependent synaptogenesis is localized to functionally reorganized motor cortex. Neurobiol Learn Mem. 2002; 77(1):6377.Google Scholar
130. Classen, J, Liepert, J, Wise, SP, Hallett, M, Cohen, LG. Rapid plasticity of human cortical movement representation induced by practice. J Neurophysiol. 1998; 79(2):111723.Google Scholar
131. Karni, A, Meyer, G, Jezzard, P, Adams, MM, Turner, R, Ungerleider, LG. Functional MRI evidence for adult motor cortex plasticity during motor skill learning. Nature. 1995; 377(6545):1558.Google Scholar
132. Galea, MP, Miller, KJ, and Kilbreath, SL. Early task-related training enhances upper limb function following stroke. Poster presented at the annual meeting of the Society for Neural Control of Movement, Sevilla, Spain, 2001. [abstract].Google Scholar
133. Smith, GV, Silver, KH, Goldberg, AP, Macko, RF. “Task-oriented” exercise improves hamstring strength and spastic reflexes in chronic stroke patients. Stroke. 1999; 30(10):21128.Google Scholar
134. Winstein, C, Rose, D. Recovery and arm use after stroke. J Cerebrovasc Dis. 2001; 10:197.Google Scholar
135. Ma, HI, Trombly, CA. A synthesis of the effects of occupational therapy for persons with stroke, Part II: remediation of impairments. Am J Occup Ther. 2002; 56(3):26074.Google Scholar
136. Taub, E, Crago, JE, Burgio, LD, Groomes, TE, Cook, EW III, DeLuca, SC, et al. An operant approach to rehabilitation medicine: overcoming learned nonuse by shaping. J Exp Anal Behav. 1994; 61(2):28193.Google Scholar
137. Taub, E, Uswatte, G, Elbert, T. New treatments in neurorehabilitation founded on basic research. Nat Rev Neurosci. 2002; 3(3):22836.Google Scholar
138. Taub, E, Miller, NE, Novack, TA, Cook, EW, Fleming, WC, Nepomuceno, CS, et al. Technique to improve chronic motor deficit after stroke. Arch Phys Med Rehabil. 1993; 74:34754.Google Scholar
139. Dromerick, AW, Edwards, DF, Hahn, M. Does the application of constraint-induced movement therapy during acute rehabilitation reduce arm impairment after ischemic stroke? Stroke. 2000; 31(12):29848.CrossRefGoogle ScholarPubMed
140. van der Lee, JH, Wagenaar, RC, Lankhorst, GJ, Vogelaar, TW, Deville, WL, Bouter, LM. Forced use of the upper extremity in chronic stroke patients: results from a single-blind randomized clinical trial. Stroke. 1999; 30(11):236975.Google Scholar
141. Page, SJ, Sisto, S, Johnston, MV, Levine, P. Modified constraint-induced therapy after subacute stroke: a preliminary study. Neurorehabil Neural Repair. 2002; 16(3):2905.Google Scholar
142. Page, SJ, Sisto, S, Levine, P, McGrath, RE. Efficacy of modified constraint-induced movement therapy in chronic stroke: a single-blinded randomized controlled trial. Arch Phys Med Rehabil. 2004; 85(1):148.Google Scholar