Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-28T06:20:29.860Z Has data issue: false hasContentIssue false

Coherent instability in wall-bounded shear

Published online by Cambridge University Press:  13 April 2018

M. J. Philipp Hack*
Affiliation:
Center for Turbulence Research, Stanford University, Stanford, CA 94305, USA
Parviz Moin
Affiliation:
Center for Turbulence Research, Stanford University, Stanford, CA 94305, USA
*
Email address for correspondence: mjph@stanford.edu

Abstract

The mechanism underlying the coherent hairpin process in wall-bounded shear flows is studied. An algorithm for the identification and analysis of flow structures based on morphological operations is presented. The method distils the topology of the flow field into a discrete data set and enables the time-resolved sampling of coherent flow processes across multiple scales. Application to direct simulation data of transitional and turbulent boundary layers at moderate Reynolds number sheds light on the flow physics of the hairpin process. The analysis links the hairpin to an exponential instability which is amplified in the flow distorted by a negative perturbation in the streamwise velocity component. Linear analyses substantiate the connection to an inviscid instability mechanism of varicose type. The formation of packets of hairpins is related to a self-similar process which originates from a single patch of low-speed fluid and describes a recurrence of the dynamics that leads to the formation of an individual hairpin. Analysis of the evolution of several thousand turbulent hairpins provides a statistical characterization of the principal dynamics and yields a time-resolved average of the hairpin process. Comparisons with the transitional hairpin show qualitatively consistent trends and thus support earlier hypotheses of their equivalence. In terms of the causality of events, the results suggest that the hairpin is a manifestation of the varicose instability and as such is a consequence rather than a cause of the primary perturbations of the flow.

Type
JFM Papers
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adrian, R. J. 2007 Hairpin vortex organization in wall turbulence. Phys. Fluids 19, 041301.10.1063/1.2717527Google Scholar
Adrian, R. J., Meinhart, C. D. & Tomkins, C. D. 2000 Vortex organization in the outer region of the turbulent boundary layer. J. Fluid Mech. 422, 154.10.1017/S0022112000001580Google Scholar
del Alamo, J. C. & Jimenéz, J. 2006 Linear energy amplification in turbulent channels. J. Fluid Mech. 559, 205213.10.1017/S0022112006000607Google Scholar
del Alamo, J. C., Jimenéz, J., Zandonade, P. & Moser, R. 2006 Self-similar vortex clusters in the turbulent logarithmic region. J. Fluid Mech. 561, 329358.10.1017/S0022112006000814Google Scholar
Andersson, P., Brandt, L., Bottaro, A. & Henningson, D. S. 2001 On the breakdown of boundary layer streaks. J. Fluid Mech. 428, 2960.10.1017/S0022112000002421Google Scholar
Asai, M., Minagawa, M. & Nishioka, M. 2002 The instability and breakdown of a near-wall low-speed streak. J. Fluid Mech. 455, 289314.10.1017/S0022112001007431Google Scholar
Aubry, N., Holmes, P. & Stone, E. 1988 The dynamics of coherent structure in the wall region of a turbulent boundary layer. J. Fluid Mech. 192, 115173.10.1017/S0022112088001818Google Scholar
Bakewell, H. P. & Lumley, J. L. 1967 Viscous sublayer and adjacent wall region in turbulent pipe flow. Phys. Fluids 10 (9), 18801889.10.1063/1.1762382Google Scholar
Blackburn, H. M., Mansour, N. N. & Cantwell, B. J. 1996 Topology of fine-scale motions in turbulent channel flow. J. Fluid Mech. 310, 269292.10.1017/S0022112096001802Google Scholar
Blackwelder, R. F. & Kaplan, R. E. 1976 On the wall structure of the turbulent boundary layer. J. Fluid Mech. 76, 89112.10.1017/S0022112076003145Google Scholar
Butler, K. M. & Farrell, B. F. 1992 Three-dimensional optimal perturbations in viscous shear flow. Phys. Fluids A 4 (8), 16371650.10.1063/1.858386Google Scholar
Chong, M. S., Perry, A. E. & Cantwell, B. J. 1990 A general classification of three-dimensional flow fields. Phys. Fluids A 2, 765777.10.1063/1.857730Google Scholar
Corino, E. R. & Brodkey, R. S. 1969 A visual investigation of the wall region in turbulent flow. J. Fluid Mech. 37, 130.10.1017/S0022112069000395Google Scholar
Cossu, C., Pujals, G. & Depardon, S. 2009 Optimal transient growth and very large-scale structures in turbulent boundary layers. J. Fluid Mech. 619, 7994.10.1017/S0022112008004370Google Scholar
Dennis, D. J. C. & Nickels, T. B. 2011a Experimental measurement of large-scale three-dimensional structures in a turbulent boundary layer. Part 1. Vortex packets. J. Fluid Mech. 673, 180217.10.1017/S0022112010006324Google Scholar
Dennis, D. J. C. & Nickels, T. B. 2011b Experimental measurement of large-scale three-dimensional structures in a turbulent boundary layer. Part 2. Long structures. J. Fluid Mech. 673, 218244.10.1017/S0022112010006336Google Scholar
Elsinga, G. E., Poelma, C., Schröder, A., Geisler, R., Scarano, F. & Westerweel, J. 2012 Tracking of vortices in a turbulent boundary layer. J. Fluid Mech. 697, 273295.10.1017/jfm.2012.60Google Scholar
Farrell, B. F. 1987 Developing disturbances in shear. J. Atmos. Sci. 44 (16), 21912199.10.1175/1520-0469(1987)044<2191:DDIS>2.0.CO;22.0.CO;2>Google Scholar
Fasel, H. & Konzelmann, U. 1990 Non-parallel stability of a flat-plate boundary layer using the complete Navier–Stokes equations. J. Fluid Mech. 221, 311347.10.1017/S0022112090003585Google Scholar
Hack, M. J. P. & Moin, P. 2017 Algebraic disturbance growth by interaction of Orr and lift-up mechanisms. J. Fluid Mech. 829, 112126.10.1017/jfm.2017.557Google Scholar
Hack, M. J. P. & Zaki, T. A. 2014a The influence of harmonic wall motion on transitional boundary layers. J. Fluid Mech. 760, 6394.10.1017/jfm.2014.591Google Scholar
Hack, M. J. P. & Zaki, T. A. 2014b Streak instabilities in boundary layers beneath free-stream turbulence. J. Fluid Mech. 741, 280315.10.1017/jfm.2013.677Google Scholar
Hack, M. J. P. & Zaki, T. A. 2016 Data-enabled prediction of streak breakdown in pressure-gradient boundary layers. J. Fluid Mech. 801, 4364.10.1017/jfm.2016.441Google Scholar
Head, M. R. & Bandyopadhyay, P. 1981 New aspects of turbulent boundary-layer structure. J. Fluid Mech. 107, 297338.10.1017/S0022112081001791Google Scholar
Herbert, T.1984 Analysis of the subharmonic route to transition in boundary layers. AIAA Paper 84 (0009).10.2514/6.1984-9Google Scholar
Herbert, T. 1988 Secondary instability of boundary layers. Annu. Rev. Fluid Mech. 20, 487526.10.1146/annurev.fl.20.010188.002415Google Scholar
Hultgren, L. S. & Gustavsson, L. H. 1981 Algebraic growth of disturbances in a boundary layer. Phys. Fluids 24, 10001004.10.1063/1.863490Google Scholar
Hunt, J. C. R., Wray, A. A. & Moin, P. 1988 Eddies, stream, and convergence zones in turbulent flows. In Center for Turbulence Research, Proceedings of the Summer Program, pp. 193208. Stanford University.Google Scholar
Jimenéz, J. 2013 How linear is wall-bounded turbulence? Phys. Fluids 25, 110814.10.1063/1.4819081Google Scholar
Kachanov, Y. S. & Levchenko, V. Y. 1984 The resonant interaction of disturbances at laminar–turbulent transition in a boundary layer. J. Fluid Mech. 138, 209247.10.1017/S0022112084000100Google Scholar
Kim, J. 1983 On the structure of wall-bounded turbulent flows. Phys. Fluids 26, 20882097.10.1063/1.864413Google Scholar
Kim, J. & Moin, P. 1986 The structure of the vorticity field in turbulent channel flow. Part 2. Study of ensemble-averaged fields. J. Fluid Mech. 162, 339363.10.1017/S0022112086002070Google Scholar
Klebanoff, P. S., Tidstrom, K. D. & Sargent, L. M. 1962 The three-dimensional nature of boundary layer instability. J. Fluid Mech. 12 (01), 134.10.1017/S0022112062000014Google Scholar
Kline, S. J., Reynolds, W. C., Schraub, F. A. & Runstadler, P. W. 1967 The structure of turbulent boundary layers. J. Fluid Mech. 30, 741773.10.1017/S0022112067001740Google Scholar
Kong, T. Y. & Rosenfeld, A. 1989 Digital topology: introduction and survey. Comput. Vis. Graph. Image Process. 48, 357393.10.1016/0734-189X(89)90147-3Google Scholar
Lam, L., Lee, S. W. & Suen, C. Y. 1992 Thinning methodologies – a comprehensive survey. IEEE Trans. Pattern Anal. Mach. Intell. 8, 869885.10.1109/34.161346Google Scholar
Landahl, M. T. 1975 Wave breakdown and turbulence. SIAM J. Appl. Math. 28 (4), 735756.10.1137/0128061Google Scholar
Lee, T.-C. & Kashyap, R. L. 1994 Building skeleton models via 3-d medial surface/axis thinning algorithms. CVGIP: Graph. Models Image Process. 56 (6), 462478.Google Scholar
Lehew, J., Guala, M. & McKeon, B. J. 2013 Time-resolved measurements of coherent structures in the turbulent boundary layer. Exp. Fluids 54 (4), 116.10.1007/s00348-013-1508-4Google Scholar
Lobregt, S., Verbeek, W. & Groen, F. C. A. 1980 Three-dimensional skeletonization: principle and algorithm. IEEE Trans. Pattern Anal. Mach. Intell. 2, 7577.10.1109/TPAMI.1980.4766974Google Scholar
Lozano-Durán, A. & Jimenéz, J. 2014 Time-resolved evolution of coherent structures in turbulent channels: characterization of eddies and cascades. J. Fluid Mech. 759, 432471.10.1017/jfm.2014.575Google Scholar
Marquillie, M., Ehrenstein, U. & Laval, J.-P. 2011 Instability of streaks in wall turbulence with adverse pressure gradient. J. Fluid Mech. 681, 205240.10.1017/jfm.2011.193Google Scholar
Maschhoff, K. J. & Sorensen, D. C. 1996 P_ARPACK: An efficient portable large scale eigenvalue package for distributed memory parallel architectures. In Lecture Notes in Computer Science (ed. Waśniewski, J., Dongarra, M. K., J. & Olesen, D.), Applied Parallel Computing Industrial Computation and Optimization, vol. 1184. Springer.Google Scholar
Moin, P. & Kim, J. 1985 The structure of the vorticity field in turbulent channel flow. Part 1. Analysis of instantaneous fields and statistical correlations. J. Fluid Mech. 155, 441464.10.1017/S0022112085001896Google Scholar
Moin, P. & Moser, R. 1989 Characteristic-eddy decomposition of turbulence in a channel. J. Fluid Mech. 200, 471509.10.1017/S0022112089000741Google Scholar
Morgenthaler, D. G.1981 Three-dimensional simple points: serial erosion, parallel thinning and skeletonization. Tech. Rep. TR-1005, Computer Vision Laboratory, University of Maryland.Google Scholar
Park, G. I., Wallace, J. M., Wu, X. & Moin, P. 2012 Boundary layer turbulence in transitional and developed states. Phys. Fluids 24, 035105.10.1063/1.3693146Google Scholar
Perry, A. E. & Chong, M. S. 1982 On the mechanism of wall turbulence. J. Fluid Mech. 119, 172217.10.1017/S0022112082001311Google Scholar
Reynolds, W. C. & Hussain, A. K. M. F. 1972 The mechanics of an organized wave in turbulent shear flow. Part 3. Theoretical models and comparisons with experiments. J. Fluid Mech. 54, 263288.10.1017/S0022112072000679Google Scholar
Robinson, S. K. 1991 Coherent motions in the turbulent boundary layer. Annu. Rev. Fluid Mech. 23, 601639.10.1146/annurev.fl.23.010191.003125Google Scholar
Rogers, M. M. & Moin, P. 1987 The structure of the vorticity field in homogeneous turbulent flows. J. Fluid Mech. 176, 3366.10.1017/S0022112087000569Google Scholar
Sayadi, T., Hamman, C. W. & Moin, P. 2013 Direct numerical simulation of complete H-type and K-type transitions with implications for the dynamics of turbulent boundary layers. J. Fluid Mech. 724, 480509.10.1017/jfm.2013.142Google Scholar
Sayadi, T., Schmid, P. J., Nichols, J. W. & Moin, P. 2014 Reduced-order representation of near-wall structures in the late transitional boundary layer. J. Fluid Mech. 748, 278301.10.1017/jfm.2014.184Google Scholar
Schlatter, P., Li, Q., Örlu, R., Hussain, F. & Henningson, D. S. 2014 On the near-wall vortical structures at moderate Reynolds numbers. Eur. J. Mech. (B/Fluids) 48, 7593.10.1016/j.euromechflu.2014.04.011Google Scholar
Schmid, P. J. 2010 Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656, 528.10.1017/S0022112010001217Google Scholar
Sharma, A. S. & McKeon, B. J. 2013 On coherent structures in wall turbulence. J. Fluid Mech. 728, 196238.10.1017/jfm.2013.286Google Scholar
Smith, C. R., Walker, J. D. A., Haidari, A. H. & Sobrun, U. 1991 On the dynamics of near-wall turbulence. Proc. R. Soc. Lond. A 336, 131175.Google Scholar
Smits, A. J., McKeon, B. J. & Marusic, I. 2011 High Reynolds number wall turbulence. Annu. Rev. Fluid Mech. 43, 353375.10.1146/annurev-fluid-122109-160753Google Scholar
Sorensen, D. C. 1992 Implicit application of polynomial filters in a k-step Arnoldi method. SIAM J. Matrix Anal. Appl. 13 (1), 357385.10.1137/0613025Google Scholar
Swearingen, J. D. & Blackwelder, R. F. 1987 The growth and breakdown of streamwise vortices in the presence of a wall. J. Fluid Mech. 187, 255290.10.1017/S0022112087002337Google Scholar
Theodorsen, T. 1952 Mechanism of turbulence. In Proceedings of 2nd Midwestern Conference of Fluid Mechanics. Ohio State University.Google Scholar
Theodorsen, T. 1955 The structure of turbulence. In 50 Jahre Grenzschichtforschung (ed. Görtler, H. & Tollmien, W.). Friedrich Vieweg & Sohn.Google Scholar
Tollmien, W. 1929 Über die Entstehung der Turbulenz. In Abhandlungen der Gesellschaft der Wissenschaften in Göttingen – Mathematisch-Physikalische Klasse, pp. 2143.Google Scholar
Townsend, A. A. 1961 Equilibrium layers and wall turbulence. J. Fluid Mech. 11, 97120.10.1017/S0022112061000883Google Scholar
Trefethen, L. N., Trefethen, A. N., Reddy, S. C. & Driscoll, T. A. 1993 Hydrodynamic stability without eigenvalues. Science 261 (5121), 578584.10.1126/science.261.5121.578Google Scholar
Wallace, J. M., Eckelmann, H. & Brodkey, R. S. 1972 The wall region in turbulent shear flow. J. Fluid Mech. 54, 3948.10.1017/S0022112072000515Google Scholar
White, F. M. 2005 Viscous Fluid Flow, 3rd edn. McGraw-Hill.Google Scholar
Wu, X. & Moin, P. 2009 Direct numerical simulation of turbulence in a nominally zero-pressure-gradient flat-plate boundary layer. J. Fluid Mech. 630, 541.10.1017/S0022112009006624Google Scholar
Wu, X., Moin, P., Wallace, J. M., Skarda, J., Lozano-Durán, A. & Hickey, J.-P. 2017 Transitional–turbulent spots and turbulent–turbulent spots in boundary layers. Proc. Natl Acad. Sci. USA 114 (27), E5292.10.1073/pnas.1704671114Google Scholar
Yang, Y. & Pullin, D. I. 2011 Geometric study of Lagrangian and Eulerian structures in turbulent channel flow. J. Fluid Mech. 674, 6792.10.1017/S0022112010006427Google Scholar
Yang, Y., Zaho, Y., Xiong, S., Hack, M. J. P. & Kim, J. 2016 Evolution of vortex-surface fields in the K-type transitional boundary layer. In Center for Turbulence Research, Proceedings of the Summer Program, pp. 203212. Stanford University.Google Scholar
Zhou, J., Adrian, R. J., Balachandar, S. & Kendall, T. M. 1999 Mechanisms for generating coherent packets of hairpin vortices in channel flow. J. Fluid Mech. 387, 353396.10.1017/S002211209900467XGoogle Scholar

Philipp Hack et al. supplementary movie 1

Animation of hairpin formation during the late stage of K-type transition. Isosurfaces of $Q=5$ (red), $u'=0.20$ (white) and $u'=-0.20$ (black).

Download Philipp Hack et al. supplementary movie 1(Video)
Video 7.8 MB

Philipp Hack et al. supplementary movie 2

Animation of hairpin formation during the late stage of K-type transition. Isosurfaces of $Q=5$ (red),

Download Philipp Hack et al. supplementary movie 2(Video)
Video 7.7 MB

Philipp Hack et al. supplementary movie 3

Animation of the dynamically averaged turbulent hairpin process. Isosurfaces of $Q$ criterion (red) and positive (white) and negative (black) streamwise velocity fluctuations $u'$.

Download Philipp Hack et al. supplementary movie 3(Video)
Video 3.8 MB

Philipp Hack et al. supplementary movie 4

Animation of the dynamically averaged turbulent hairpin process. Isosurfaces of $Q$ criterion (red) and positive (white) and negative (black) streamwise velocity fluctuations $v'$.

Download Philipp Hack et al. supplementary movie 4(Video)
Video 3.7 MB