Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-05-17T03:34:24.343Z Has data issue: false hasContentIssue false

Sound-symbolic association between speech sound and spatial meaning in relation to the concepts of up/down and above/below

Published online by Cambridge University Press:  25 July 2023

Lari Vainio*
Affiliation:
Perception, Action & Cognition Research Group, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland Phonetics and Speech Synthesis Research Group, Department of Digital Humanities, University of Helsinki, Helsinki, Finland
Alexandra Wikström
Affiliation:
Phonetics and Speech Synthesis Research Group, Department of Digital Humanities, University of Helsinki, Helsinki, Finland
Claudia Repetto
Affiliation:
Department of Psychology, Università Cattolica del Sacro Cuore, Milano, Italy
Martti Vainio
Affiliation:
Phonetics and Speech Synthesis Research Group, Department of Digital Humanities, University of Helsinki, Helsinki, Finland
*
Corresponding author: Lari Vainio; Email: lari.vainio@helsinki.fi

Abstract

Research has shown sound-symbolic associations between speech sounds and conceptual and/or perceptual properties of a referent. This study used the choice response time method to investigate hypothesized associations between a high/low vowel and spatial concepts of up/down and above/below. The participants were presented with a stimulus that moved either upward or downward (Experiments 1 and 2), or that was located above or below the reference stimulus (Experiment 3), and they had to pronounce a vowel ([i] or [æ]) based on the spatial location of the stimulus. The study showed that the high vowel [i] was produced faster in relation to the up-directed and the above-positioned stimulus, while the low vowel [æ] was produced faster in relation to the down-directed and the below-positioned stimulus. In addition, the study replicated the pitch-elevation effect showing a raising of the vocalization pitch when vocalizations were produced to the up-directed stimulus. The article discusses these effects in terms of the involvement of sensorimotor processes in representing spatial concepts.

Type
Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adelman, J. S., Estes, Z., & Cossu, M. (2018). Emotional sound symbolism: Languages rapidly signal valence via phonemes. Cognition, 175, 122130.CrossRefGoogle ScholarPubMed
Anikin, A., & Johansson, N. (2019). Implicit associations between individual properties of color and sound. Attention, Perception, & Psychophysics, 81(3), 764777.CrossRefGoogle ScholarPubMed
Bennett, D. A. (2001). How can I deal with missing data in my study?. Australian and New Zealand Journal of Public Health, 25(5), 464469.CrossRefGoogle Scholar
Binder, J. R., & Desai, R. H. (2011). The neurobiology of semantic memory. Trends in Cognitive Sciences, 15(11), 527536.CrossRefGoogle ScholarPubMed
Blasi, D. E., Wichmann, S., Hammarström, H., Stadler, P. F., & Christiansen, M. H. (2016). Sound–meaning association biases evidenced across thousands of languages. Proceedings of the National Academy of Sciences, 113(39), 1081810823.CrossRefGoogle ScholarPubMed
Boersma, P. (2001). Praat, a system for doing phonetics by computer. Glot International, 5(9), 341345.Google Scholar
Brysbaert, M., & Stevens, M. (2018). Power analysis and effect size in mixed effects models: A tutorial. Journal of Cognition, 1(1), 9.CrossRefGoogle ScholarPubMed
Clark, N., Perlman, M., & Johansson Falck, M. (2013). Iconic pitch expresses vertical space. In Language and the Creative Mind (pp. 393410). CSLI Publications.Google Scholar
Cuskley, C. (2013). Mappings between linguistic sound and motion. Public Journal of Semiotics, 5(1), 3962.CrossRefGoogle Scholar
Cwiek, A., & Fuchs, S. (2019). Iconic prosody is rooted in sensori-motor properties: Fundamental frequency and the vertical space. In CogSci 2019: 41st annual meeting of the cognitive science society (pp. 15721578).Google Scholar
Dingemanse, M., Blasi, D. E., Lupyan, G., Christiansen, M. H., & Monaghan, P. (2015). Arbitrariness, iconicity, and systematicity in language. Trends in Cognitive Sciences, 19(10), 603615.CrossRefGoogle ScholarPubMed
Dreyer, F. R., & Pulvermüller, F. (2018). Abstract semantics in the motor system?–An event-related fMRI study on passive reading of semantic word categories carrying abstract emotional and mental meaning. Cortex, 100, 5270.CrossRefGoogle Scholar
Fant, G. (1960). Acoustic theory of speech production. Mouton.Google Scholar
Franca, M., Turella, L., Canto, R., Brunelli, N., Allione, L., Andreasi, N. G., Desantis, M., Marzoli, D., & Fadiga, L. (2012). Corticospinal facilitation during observation of graspable objects: A transcranial magnetic stimulation study. PLoS One, 7(11), e49025.CrossRefGoogle ScholarPubMed
Green, P., & MacLeod, C. J. (2016). SIMR: An R package for power analysis of generalized linear mixed models by simulation. Methods in Ecology and Evolution, 7(4), 493498. https://doi.org/10.1111/2041-210X.12504CrossRefGoogle Scholar
Higashikawa, M., Nakai, K., Sakakura, A., & Takahashi, H. (1996). Perceived pitch of whispered vowels-relationship with formant frequencies: A preliminary study. Journal of Voice, 10(2), 155158.CrossRefGoogle ScholarPubMed
Honda, K., Hirai, H., Masaki, S., & Shimada, Y. (1999). Role of vertical larynx movement and cervical lordosis in F0 control. Language and Speech, 42(4), 401411.CrossRefGoogle ScholarPubMed
Imai, M., & Kita, S. (2014). The sound symbolism bootstrapping hypothesis for language acquisition and language evolution. Philosophical transactions of the Royal Society B: Biological Sciences, 369(1651), 20130298.CrossRefGoogle ScholarPubMed
Johansson, N., Anikin, A., & Aseyev, N. (2020). Color sound symbolism in natural languages. Language and Cognition, 12(1), 5683. https://doi.org/10.1017/langcog.2019.35CrossRefGoogle Scholar
Johansson, N., & Zlatev, J. (2013). Motivations for sound symbolism in spatial deixis: A typological study of 101 languages. The Public Journal of Semiotics, 5(1), 120.Google Scholar
Knoeferle, K., Li, J., Maggioni, E., & Spence, C. (2017). What drives sound symbolism? Different acoustic cues underlie sound-size and sound-shape mappings. Scientific Reports, 7(1), 111.CrossRefGoogle ScholarPubMed
Kornblum, S., Hasbroucq, T., & Osman, A. (1990). Dimensional overlap: cognitive basis for stimulus-response compatibility--A model and taxonomy. Psychological Review, 97(2), 253.CrossRefGoogle ScholarPubMed
Körner, A., & Rummer, R. (2022). Articulation contributes to valence sound symbolism. Journal of Experimental Psychology: General, 151(5), 1107.CrossRefGoogle ScholarPubMed
Ladefoged, P. (1968). A phonetic study of West African languages: An auditory-instrumental survey (Vol. 1). Cambridge University Press.Google Scholar
Lakens, D. (2012). Polarity correspondence in metaphor congruency effects: Structural overlap predicts categorization times for bipolar concepts presented in vertical space. Journal of Experimental Psychology: Learning, Memory, and Cognition, 38(3), 726.Google ScholarPubMed
Lakens, D. (2013). Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and ANOVAs. Frontiers in Psychology, 4, 863.CrossRefGoogle Scholar
Liu, Y., Shamei, A., Chow, U. Y., Soo, R., Pineda Mora, G., de Boer, G., & Gick, B. (2020). F0-related head movement in blind versus sighted speakers. The Journal of the Acoustical Society of America, 148(2), EL190EL194.CrossRefGoogle ScholarPubMed
Margiotoudi, K., & Pulvermüller, F. (2020). Action sound–shape congruencies explain sound symbolism. Scientific Reports, 10(1), 113.CrossRefGoogle ScholarPubMed
Monaghan, P., Mattock, K., & Walker, P. (2012). The role of sound symbolism in language learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 38(5), 1152.Google ScholarPubMed
Munhall, K. G., Jones, J. A., Callan, D. E., Kuratate, T., & Vatikiotis-Bateson, E. (2004). Visual prosody and speech intelligibility: Head movement improves auditory speech perception. Psychological Science, 15(2), 133137.CrossRefGoogle ScholarPubMed
Nielsen, A., & Rendall, D. (2012). The source and magnitude of sound-symbolic biases in processing artificial word material and their implications for language learning and transmission. Language and Cognition, 4(2), 115125.CrossRefGoogle Scholar
Ohala, J. J. (1994). The frequency code underlies the sound-symbolic use of voice pitch. Sound Symbolism, 2, 325347.Google Scholar
Pääkkönen, M. (1991). A:sta Ö:hön. Suomen kielen yleisyystilastoja. Kielikello, 1.Google Scholar
Parise, C. V., Knorre, K., & Ernst, M. O. (2014). Natural auditory scene statistics shapes human spatial hearing. Proceedings of the National Academy of Sciences, 111(16), 61046108.CrossRefGoogle ScholarPubMed
Perniss, P., Thompson, R. L., & Vigliocco, G. (2010). Iconicity as a general property of language: evidence from spoken and signed languages. Frontiers in Psychology, 1, 227.CrossRefGoogle ScholarPubMed
Perniss, P., & Vigliocco, G. (2014). The bridge of iconicity: from a world of experience to the experience of language. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1651), 20130300.CrossRefGoogle Scholar
Pisanski, K., Isenstein, S. G., Montano, K. J., O’Connor, J. J., & Feinberg, D. R. (2017). Low is large: Spatial location and pitch interact in voice-based body size estimation. Attention, Perception, & Psychophysics, 79, 12391251.CrossRefGoogle ScholarPubMed
Pratt, C. C. (1930). The spatial character of high and low tones. Journal of Experimental Psychology, 13(3), 278285.CrossRefGoogle Scholar
Pulvermüller, F. (2018). The case of CAUSE: neurobiological mechanisms for grounding an abstract concept. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1752), 20170129.CrossRefGoogle ScholarPubMed
Pulvermüller, F., Huss, M., Kherif, F., del Prado Martin, F., Hauk, O., & Shtyrov, Y. (2006). Motor cortex maps articulatory features of speech sounds. Proceedings of the National Academy of Sciences, 103(20), 78657870.CrossRefGoogle ScholarPubMed
Rabaglia, C. D., Maglio, S. J., Krehm, M., Seok, J. H., & Trope, Y. (2016). The sound of distance. Cognition, 152, 141149.CrossRefGoogle ScholarPubMed
Ramachandran, V. S., & Hubbard, E. M. (2001). Synaesthesia--A window into perception, thought and language. Journal of Consciousness Studies, 8(12), 334.Google Scholar
Saldías, M., Laukkanen, A. M., Guzmán, M., Miranda, G., Stoney, J., Alku, P., & Sundberg, J. (2021). The vocal tract in loud twang-like singing while producing high and low pitches. Journal of Voice, 35(5), 807.e1807.e23.CrossRefGoogle ScholarPubMed
Sapir, E. (1929). A study in phonetic symbolism. Journal of Experimental Psychology, 12(3), 225. https://doi.org/10.1037/h0070931CrossRefGoogle Scholar
Sapir, S. (1989). The intrinsic pitch of vowels: Theoretical, physiological, and clinical considerations. Journal of Voice, 3(1), 4451.CrossRefGoogle Scholar
Shintel, H., Nusbaum, H. C., & Okrent, A. (2006). Analog acoustic expression in speech communication. Journal of Memory and Language, 55(2), 167177.CrossRefGoogle Scholar
Sidhu, D. M., & Pexman, P. M. (2018). Five mechanisms of sound symbolic association. Psychonomic Bulletin & Review, 25, 16191643.CrossRefGoogle ScholarPubMed
Simko, J., & Cummins, F. (2010). Embodied task dynamics. Psychological Review, 117(4), 1229.CrossRefGoogle ScholarPubMed
Simon, J. R. (1990). The effects of an irrelevant directional cue on human information processing. In Proctor, R. W. & Reeve, T. G. (Eds.), Stimulus- response compatibility: An integrated perspective. Advances in Psychology (Vol. 65, pp. 3186). Amsterdam.Google Scholar
Spence, C. (2019). On the relative nature of (pitch-based) crossmodal correspondences. Multisensory Research, 32(3), 235265.CrossRefGoogle ScholarPubMed
Tanz, C. (1971). Sound symbolism in words relating to proximity and distance. Language and Speech, 14(3), 266276.CrossRefGoogle ScholarPubMed
Thompson, P. D., & Estes, Z. (2011). Sound symbolic naming of novel objects is a graded function. The Quarterly Journal of Experimental Psychology, 64(12), 23922404.CrossRefGoogle ScholarPubMed
Tucker, M., & Ellis, R. (2001). The potentiation of grasp types during visual object categorization. Visual cognition, 8(6), 769800.CrossRefGoogle Scholar
Vainio, L. (2021). Magnitude sound symbolism influences vowel production. Journal of Memory and Language, 118, 104213.CrossRefGoogle Scholar
Vainio, L., Kilpeläinen, M., Wikström, A., & Vainio, M. (2023). Sound-space symbolism: Associating articulatory front and back positions of the tongue with the spatial concepts of forward/front and backward/back. Journal of Memory and Language, 130, 104414.CrossRefGoogle Scholar
Vainio, L., Rantala, A., Tiainen, M., Tiippana, K., Komeilipoor, N., & Vainio, M. (2017). Systematic influence of perceived grasp shape on speech production. PloS One, 12(1), e0170221.CrossRefGoogle ScholarPubMed
Vainio, L., Tiainen, M., Tiippana, K., Komeilipoor, N., & Vainio, M. (2015). Interaction in planning movement direction for articulatory gestures and manual actions. Experimental Brain Research, 233, 29512959.CrossRefGoogle ScholarPubMed
Vainio, L., Tiainen, M., Tiippana, K., & Vainio, M. (2019). Connecting directional limb movements to vowel fronting and backing. Neuroscience Letters, 711, 134457.CrossRefGoogle ScholarPubMed
Vainio, L., Tiippana, K., Tiainen, M., Rantala, A., & Vainio, M. (2018). Reaching and grasping with the tongue: Shared motor planning between hand actions and articulatory gestures. Quarterly Journal of Experimental Psychology, 71(10), 21292141.CrossRefGoogle ScholarPubMed
Vainio, L., & Vainio, M. (2021). Sound-action symbolism. Frontiers in Psychology, 12, 718700.CrossRefGoogle ScholarPubMed
Welford, A. T. (1980). Reaction times. Academic Press.Google Scholar
Whalen, D. H., & Levitt, A. G. (1995). The universality of intrinsic F0 of vowels. Journal of Phonetics, 23(3), 349366. https://doi.org/10.1016/S0095-4470(95)80165-0CrossRefGoogle Scholar
Willmes, K., & Iversen, W. (1995). On the internal representation of number parity. In Paper presented at the spring annual general meeting of the British neuropsychological society, London.Google Scholar
Winter, B., Matlock, T., Shaki, S., & Fischer, M. H. (2015). Mental number space in three dimensions. Neuroscience & Biobehavioral Reviews, 57, 209219.CrossRefGoogle ScholarPubMed
Winter, B., & Perlman, M. (2021). Size sound symbolism in the English lexicon. Glossa: A Journal of General Linguistics, 6(1), 113.CrossRefGoogle Scholar
Zimmer, K. (1964). Affixed negation in English and other languages: An investigation of restricted productivity. Word, 20, 2, Monograph No. 5.Google Scholar
Supplementary material: File

Vainio et al. supplementary material

Vainio et al. supplementary material

Download Vainio et al. supplementary material(File)
File 19.2 KB