Skip to main content
Log in

On the Choice of Soil Hydraulic Models in Land-Surface Schemes

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

The uncertainties in soil hydraulic functions and soil hydraulic parameters affect the performance of land-surface schemes used in climate and weather prediction models. The Clapp–Hornberger soil hydraulic model of is most widely used in land-surface modelling, while other models favoured by soil physicists are hardly used for the purpose. In this study, we give a summary of four soil hydraulic models and examine the impact of these models on the performance of a land-surface scheme. It is found that inconsistency in soil hydraulic functions and parameters leads to different outcomes in land-surface modelling. We introduce a technique to match the soil hydraulic parameters for different models, so that the disagreement in the description of soil hydraulic properties among different models is reduced, while intrinsic differences in the soil hydraulic functions remain. The numerical tests also show that the land-surface model has a degree of tolerance to the uncertainties in soil hydraulic models, at least in the case of off-line simulations. The van Genuchten model performs well, but is numerically expensive. The Brooks–Corey and Clapp–Hornberger models are sufficiently accurate with numerical efficiency, and are therefore more suitable for land-surface schemes used in atmospheric models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Broadbridge, P. and White, I.: 1988, ‘Constant Rate Infiltration: a Versatile Nonlinear Model. 1. Analytic Solution’, Water Resour. Res. 24, 145–154.

    Google Scholar 

  • Brooks, R. H. and Corey, A. T.: 1964, ‘Hydraulic Properties of Porous Media’, Hydrology Paper 3, Colorado State University, Fort Collins, CO, 27 pp.

    Google Scholar 

  • Budyko, M. I.: 1956, The Heat Balance of the Earth's Surface, Gidrometeoizdat, Leningrad, 255 pp. (in Russian).

  • Burdine, N. T.: 1953, ‘Relative Permeability Calculation from Size Distribution Data’, Trans. AIME 198, 71–78.

    Google Scholar 

  • Campbell, G. S.: 1974, ‘A Simple Method for Determining Unsaturated Conductivity from Moisture Retention Data’, Soil Sci. 117, 311–314.

    Google Scholar 

  • Campbell, G. S.: 1985, Soil Physics with Basic, Elsevier, New York, 73–97.

    Google Scholar 

  • Carsel, R. F. and Parrish, R. S.: 1988, ‘Developing Joint Probability Distributions of Soil Water Retention Characteristics’, Water Resour. Res. 24, 755–769.

    Google Scholar 

  • Clapp, R. B. and Hornberger, G.M.: 1978, ‘Empirical Equations for Some Soil Hydraulic Properties’, Water Resour. Res. 14, 601–604.

    Google Scholar 

  • Cosby, B. J., Hornberger, G.M., Clapp, R. B., and Ginn, T. R.: 1984, ‘A Statistical Exploration of the Relationships of Soil Moisture Characteristics to the Physical Properties of Soils’, Water Resour. Res. 20, 682–690.

    Google Scholar 

  • Dickinson, R. E., Henderson-Sellers, A., and Kennedy, P. J.: 1993, ‘Biosphere-Atmosphere Transfer Scheme (BATS) Version 1e as coupled to the NCAR Community Climate Model’, Technical Note TN-387+STR, National Center for Atmosphere Research, Colorado, 72 pp.

    Google Scholar 

  • Gardner, W. R.: 1958, ‘Some Steady State Solutions of the Unsaturated Moisture Flow Equation with Application to Evaporation from Water Table’, Soil Sci. 85, 228–232.

    Google Scholar 

  • Green, R. E. and Corey, J. C.: 1971, ‘Calculation of Hydraulic Conductivity: A Further Evaluation of Some Predictive Methods’, Soil Sci. Soc. Am. Proc. 35, 3–8.

    Google Scholar 

  • Goutorbe, J. P.: 1991, ‘A Critical Assessment of the SAMER Network Accuracy’, in Schmugge, T. J. and André, J. C. (eds.), Land Surface Evaporation, Springer-Verlag, New York, pp. 171–182.

    Google Scholar 

  • Goutorbe, J. P. and Tarrieu, C.: 1991, ‘HAPEX-MOBILHY Database’, in Schmugge, T. J. and André, J. C. (eds.), Land Surface Evaporation, Springer-Verlag, Berlin, pp. 403–410.

    Google Scholar 

  • Goutorbe, J. P., Noilhan, J., Cuenca, R., and Valancogne, C.: 1989, ‘Soil Moisture Variations during HAPEX-MOBILHY’, Ann. Geophys. 7, 415–426.

    Google Scholar 

  • Hatton, T., Dyce, P., Zhang, L., and Dawes, W.: 1995, ‘WAVES — An echohydrological Model of the Surface Energy and Water Balance: Sensitivity Analysis’, CSIRO, Division of Land and Water, Canberra, Australia, Technical Memo 95/2.

    Google Scholar 

  • Holtan, H. N., England, C. B., Lawless, G. P., and Schumaker, G. A.: 1968, ‘Moisture-Tension Data for Selected Soils on Experimental Watersheds’, Rep. ARS 41–144, US Department of Agriculture, Washington, DC.

    Google Scholar 

  • Irannejad, P. and Y. Shao, 1997, ‘The Atmosphere-Landsurface Interaction Scheme (ALSIS): Description and Validation’, Global and Planetary Changes (in press).

  • Jackson, R. D.: 1972, ‘On the Calculation of Hydraulic Conductivity’, Soil Sci. Soc. Am. Proc. 36, 380–382.

    Google Scholar 

  • Knight, J. H. and J. R. Philip, 1974, ‘Exact Solutions in Nonlinear Diffusion’, J. Eng. Math. 8, 219–227.

    Google Scholar 

  • Manabe, S.: 1969, ‘Climate and Ocean Circulation, 1, The Atmospheric Circulation and the Hydrology of the Earth's Surface’, Mon. Wea. Rev. 97, 739–805.

    Google Scholar 

  • Marshal, T. J.: 1958, ‘A Relation Between Permeability and Size Distribution of Pors’, J. Soil Sci. 9, 1–8.

    Google Scholar 

  • Millington, R. J. and Quirk, J. P.: 1959, ‘Permeability of Porous Media’, Nature 183, 387–388.

    Google Scholar 

  • Mualem, Y, 1976, ‘A New Model for Predicting the Hydraulic Conductivity of Unsaturated Porous Media’, Water Resour. Res. 12, 513–521.

    Google Scholar 

  • Nachabe, M. H.: 1996, ‘Macroscopic Capillary Length, Sorptivity, and Shape Factor in Modeling the Infiltration Rate’, Soil Sci. Soc. Am. J. 60, 957–962.

    Google Scholar 

  • Parlange, J.-Y.: 1975, ‘On Solving the Flow Equation in Unsaturated Soils by Optimization, Horizontal Infiltration’, Soil Sci. Soc. Am. J. 39, 415–418.

    Google Scholar 

  • Philip, J. R.: 1973, ‘On Solving the Unsaturated Flow Equation, 1. The Flux — Concentration Relation’, Soil Sci. 116, 328–335.

    Google Scholar 

  • Philip, J. R.: 1985, ‘Reply to “Comments on Steady Infiltration from Spherical Cavities”’, Soil Sci. Soc. Am. J. 49, 788–789.

    Google Scholar 

  • Philip, J. R. and Knight, J. H.: 1974, ‘On Solving the Flow Equation: 3. New Quasi-Analytical Technique’, Soil Sci. Soc. Am. J. 117, 1–13.

    Google Scholar 

  • Rawls, W. J., Yates, P., and Asmussen, L.: 1976, ‘Calibration of Selected Infiltration Equations for the Georgia Coastal Plain’, Rep. USDA-ARS-S-110, Agric. Res. Serv., Beltsville, MD, 110 pp.

    Google Scholar 

  • Rawls, W. J. and Brakensiek, D. L.: 1982, ‘Estimating Soil Water Retention from Soil Properties’, J. Irrig. Drain. Div. Am. Soc. Civ. Eng. 108, 166–171.

    Google Scholar 

  • Redinger, G. J., Campbell, G. S., Saxton, K. E., and Papendick, R. I.: 1984, ‘Infiltration Rate of Slot Mulches: Measurement and Numerical Simulation’, Soil Sci. Soc. Am. J. 48, 982–986.

    Google Scholar 

  • Shao, Y., Anne, R. D., Henderson-Sellers, A., Irannejad, P., Thornton, P., Liang, X., Chen, T. H., Ciret, C., Desborough, C., and Balachova, O.: 1994, ‘Soil Moisture Simulation’, A report of the RICE and PILPS Workshop, IGPO Publication Series, No. 14.

  • Shao, Y. and Henderson-Sellers, A.: 1996, ‘Modelling Soil Moisture: A Project for Intercomparison of Land Surface Parameterization Schemes Phase 2(b)’, J. Geophys. Res. 101, 7727–7748.

    Google Scholar 

  • Shao, Y., Leslie, L. M., Munro, R. K., Irannejad, P., Lyons, W. F., Morison, R., Short, D., and Wood, M. S.: 1997, ‘Soil Moisture Prediction over the Australian Continent’, Meteorol. Atmos. Phys. 63, 195–215.

    Google Scholar 

  • Short, D. L., Dawes, W. R., and White, I.: 1995, ‘The Practicability of Using Richards' Equation for General Purpose Soil-Water Dynamics Models’, Environ. Int. 21, 723–730.

    Google Scholar 

  • van Genuchten, M. Th.: 1980, ‘A Closed-Form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils’, Soil Sci. Soc. Am. J. 44, 892–898.

    Google Scholar 

  • White, I. and Broadbridge, P.: 1988, ‘Constant Rate Rainfall Infiltration: A Versatile Nonlinear Model, 2. Applications of Solutions’, Water Resour. Res. 24, 155–162.

    Google Scholar 

  • White, I. and Sully, M. J.: 1987, ‘Macroscopic and Microscopic Capillary Length and Time Scales from Field Infiltration’, Water Resour. Res. 23, 1514–1522.

    Google Scholar 

  • Wood E., Lettenmaier, D., Liang, X., Lohmann, D., Boone, A., Chang, S., Chen, F., Dai, Y., Desborough, C., Duan, Q., Ek, M., Gusev, Y., Habets, F., Irannejad, P., Koster, R., Nasanova, O., Noilhan, J., Schaake, J., Schlosser, A. Shao, Y., Schmakin, A., Verseghy, D., Wang, J., Warrach, K., Wetzel, P., Xue, Y., Yang, Z., and. Zeng, Q: 1997, ‘The Project for Intercomparison of Land-Surface Parameterization Schemes (PILPS) Phase-2(c) Red-Arkansas River Experiment: 1. Experiment Description and Summary Intercomparisons’, Global and Planetary Change, in press.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shao, Y., Irannejad, P. On the Choice of Soil Hydraulic Models in Land-Surface Schemes. Boundary-Layer Meteorology 90, 83–115 (1999). https://doi.org/10.1023/A:1001786023282

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1001786023282

Navigation