Skip to main content
Log in

Factors affecting the seasonality and distribution of cyanobacteria and chlorophytes: a case study from the large lakes south of the Alps, with special reference to Lake Garda

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Chlorophytes and cyanobacteria are among the most typical algal groups, contributing to the aesthetic appearance and quality of the epilimnetic waters of the deep (251–410 m) and large (6.5–49×109 m3) lakes located on the southern edge of the Alps (from oligo-mesotrophy to meso-eutrophy: Maggiore, Garda, Como, Iseo and Lugano). The results obtained from monthly surveys carried out in the largest of these lakes (Garda) have been reported in detail. The thermal stability of the water column and silica depletion were the main factors responsible for the decline of the great spring diatoms. The successive growth of Mougeotia sp. was favoured by its lower sinking velocity and resistance to the increasing grazing pressure. During summer, the maximum stability of the water column, with high vertical nutrient concentration gradients, determined a major algal differentiation with a typical increase, among others, of Chlorococcales at the surface and metalimnetic stratification of various Oscillatoriales. The development of oligotrophic blooms, caused by a rapid thickening at the surface of Anabaena in the eastern, sheltered basin, was also discussed in light of the trophic characterisation of Lake Garda. From autumn to spring, the decreasing light, the increasing mixing depth and nutrient availability favoured a progressive dominance of vertical homogeneous populations of Planktothrix (autumn) and colonial diatoms. The same functional groups of chlorophytes and cyanobacteria have been recognised in the studies published so far on the phytoplankton of deep southern subalpine lakes. In this respect, their morphometric and physical properties appear to constitute a sort of standardising factor, reducing the range of possible dominants. With increasing TP concentrations and biomass, filaments of Planktothrix and Planktolyngbya, along with the Chlorococcales, became important. The dominance of Mougeotia (one of the most characteristic features of these large lakes) appears restricted to a medium trophic range, whereas the distribution of the Chroococcales and other filaments ascribed to Pseudanabaena and/or Limnothrix is more irregular. The conspicuous presence of Aphanizomenon in Lake Lugano is typical and characteristic of a more productive lake. Among the Nostocales, a clear interpretation of the Anabaena blooms in lakes Garda and Iseo is complicated by the peculiar behaviour of filaments concentrating at the surface, which is apparently restricted, within the medium trophic range, to stable water columns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allison, E. M. & A. E. Walsby, 1981. The role of potassium in the control of turgor pressure in a gas-vacuolate blue-green alga. J. exp. Bot. 32: 241–249.

    Google Scholar 

  • Ambrosetti, W. & L. Barbanti, 1992. Physical limnology in Italy: an historical review. Mem. Ist. ital. Idrobiol. 50: 37–59.

    Google Scholar 

  • Ambrosetti, W. & L. Barbanti, 1997. Alcune problematiche fisiche dei grandi laghi sudalpini. Documenta Ist. ital. Idrobiol. 61: 3–18.

    Google Scholar 

  • Anagnostidis, K. & J. Komárek, 1988. Modern approach to the classification system of Cyanophytes. 3-Oscillatoriales. Arch. Hydrobiol. Suppl. 80, Algological Studies 50–53: 327–472.

    Google Scholar 

  • APHA, AWWA & WEF., 1989. Standard methods for the examination of water and wastewater. 17th edn American Public Health Association, Washington.

    Google Scholar 

  • Barbanti, L., 1974. Morfologia della conca lacustre. In Gerletti, M (ed.), Indagini sul Lago di Garda. IRSA quaderni 18, Roma: 101–115.

  • Barbieri, A. & M. Simona, 1997. Evoluzione trofica recente del Lago di Lugano in relazione agli interventi di risanamento. Documenta Ist. ital. Idrobiol. 61: 73–91.

    Google Scholar 

  • Bettinetti, R., G. Morabito & A. Provini. (in press). Phytoplankton community as indicator of the recent trophic and biological evolution of the western basin of Lake Como (N. Italy). Hydrobiologia.

  • Bjork, S., 1979. Lake management studies and results at the Institute of Limnology in Lund. Arch. Hydrobiol. Beih. Ergebn. Limnol. 13: 31–55.

    Google Scholar 

  • Bleiker, W. & F. Schanz, 1989. Influence of environmental factors on the phytoplankton spring bloom in Lake Zürich. Aquat. Sci. 51: 47–58.

    Google Scholar 

  • Blomqvist, P., A. Petterson & P. Hyenstrand, 1994. Ammoniumnitrogen: a key regulatory factor causing dominance of nonnitrogen-fixing cyanobacteria in aquatic systems. Arch. Hydrobiol. 132: 141–164.

    Google Scholar 

  • Bold, H. C. & M. J. Wynne, 1985. Introduction to the Algae. Structure and reproduction. Prentice-Hall, Englewood Cliffs, N.J.: 720 pp.

    Google Scholar 

  • Bourrelly, P., 1972. Les Algues d'eau douce. Initiation à la Systématique, I. Les Algues Vertes. N. Boubée & Cie, Paris: 572 pp.

    Google Scholar 

  • Büsing, N., 1998. Seasonality of phytoplankton as an indicator of trophic status of the large perialpine 'Lago di Garda'. Hydrobiologia 369/370 (Dev. Hydrobiol. 129): 153–162.

    Google Scholar 

  • Calderoni, A., R. Mosello & R. De Bernardi, 1997. Interpretazioni problematiche di alcuni processi nella fase di oligotrofizzazione del LagoMaggiore nel decennio 1988–1997. Documenta Ist. ital. Idrobiol. 61: 33–53.

    Google Scholar 

  • Decet, F. & N. Salmaso, 1997. Indagini preliminari sulle caratteristiche chimiche dei principali affluenti e dell'emissario del Lago di Garda. Acqua Aria 7: 91–97.

    Google Scholar 

  • Dillon, P. J., K. H. Nicholls & G. W. Robinson, 1978. Phosphorus removal at Gravenhurst Bay, Ontario: an 8 year study on water quality changes. Int. Ver. Theor. Angew. Limnol. Verh. 20: 263–271.

    Google Scholar 

  • Edmondson, W. T. & J. T. Lehman, 1981. The effect of changes in the nutrient income on the condition of Lake Washington. Limnol. Oceanogr. 26: 1–29.

    Google Scholar 

  • Elser, J. J. & D. L. Frees, 1995. Microconsumer grazing and sources of limiting nutrients for phytoplankton growth: Application and complications of a nutrient-deletion/dilution-gradient technique. Limnol. Oceanogr. 40: 1–16.

    Google Scholar 

  • Field, J. G., K. R. Clarke & R. M. Warwick, 1982. A practical strategy for analysing multispecies distribution patterns. Mar. Ecol. Prog. Ser. 8: 37–52.

    Google Scholar 

  • Garibaldi, L., M. C. Brizzio, V. Mezzanotte, A. Varallo & R. Mosello, 1997. Evoluzione idrochimica e trofica del Lago d'Iseo. Documenta Ist. ital. Idrobiol. 61: 135–151.

    Google Scholar 

  • Gibson, C. E. & R. V. Smith, 1982. Freshwater plankton. In Carr N. G. & B. A. Whitton (eds), The Biology of Cyanobacteria. Blackwell Scientific Publications, Oxford: 463–489.

    Google Scholar 

  • Grant, N. G. & A. E. Walsby, 1977. The contribution of photosynthate to turgor pressure rise in the planktonic blue-green alga Anabaena flos-aquae. J. exp. Bot. 28: 409–415.

    Google Scholar 

  • Guilizzoni, P., G. Bonomi, G. Galanti & D. Ruggiu, 1983. Relationship between sedimentary pigments and primary production: evidence from core analyses of 12 Italian lakes. Hydrobiologia 103: 103–106.

    Google Scholar 

  • Happey-Wood, C. M., 1988. Ecology of freshwater planktonic green algae. In Sandgren, C. D. (ed.), Growth and Reproductive Strategies of Freshwater Phytoplankton. Cambridge University Press, Cambridge: 175–226.

    Google Scholar 

  • Hutchinson, G. E., 1967. A treatise on limnology, 2. Wiley & Sons, New York: 1115 pp.

    Google Scholar 

  • Hyenstrand, P., P. Blomqvist & A. Petterson, 1998. Factors determining cyanobacterial success in aquatic systems-a literature review. Arch. Hydrobiol. Spec. Issues Advanc. Limnol. 51: 41–62.

    Google Scholar 

  • IRSA, 1974. Indagini sul Lago di Garda. IRSA Quaderni 18, Roma: 540 pp.

  • Jensen, J. P., E. Jeppesen, K. Olrik & P. Kristensen, 1994. Impact of nutrients and physical factors on the shift from cyanobacterial to chlorophyte dominance in shallow Danish lakes. Can. J. Fish. aquat. Sci. 51: 1692–1699.

    Google Scholar 

  • Kilham, P., 1971. A hypothesis concerning silica and the freshwater plankton diatoms. Limnol. Oceanogr. 16: 10–18.

    Google Scholar 

  • Klemer, A. R., 1976. The vertical distribution of Oscillatoria agardhii var. isothrix. Arch. Hydrobiol. 78: 343–362.

    Google Scholar 

  • Komárek, J. & B. Fott, 1983. Chlorophyceae (Grünalgen), Ordnung: Chlorococcales. In Das Phytoplankton des Süßwassers (founded by G. Huber-Pestalozzi). Die Binnengewässer 16, 7/1. E. Schweizerbart'sche Verlagsbuchhandlung, Stuttgart: 1044 pp.

    Google Scholar 

  • Komarková-Legnerová, J. & G. Cronberg, 1992. New and recombined filamentous Cyanophytes from lakes in South Scania, Sweden. Arch. Hydrobiol., Algol. Stud. 67: 21–31.

    Google Scholar 

  • Komarková-Legnerová, J. & P. Eloranta, 1992. Planktic blue-green algae (Cyanophyta) from Central Finland (Jyväskylä region) with special reference to the genus Anabaena. Arch. Hydrobiol., Algol. Stud. 67: 103–133.

    Google Scholar 

  • Kristiansen, S., T. Farbrot & L. J. Naustvoll, 2000. Production of biogenic silica by spring diatoms. Limnol. Oceanogr. 45: 472–478.

    Google Scholar 

  • Kromkamp, J. & A. E. Walsby, 1990. A computer model of buoyancy and vertical migration in cyanobacteria. J. Plankton Res. 12: 161–183.

    Google Scholar 

  • Laboratorio Studi Ambientali (LSA)-SPAA, 1995. Ricerche sull'evoluzione del Lago di Lugano. Aspetti limnologici. Programma quinquennale 1993–1997. Campagna 1995. Commissione internazionale per la protezione delle acque italo-svizzere (ed.): 100 pp.

  • Laboratorio Studi Ambientali (LSA)-SPAA, 1998. Ricerche sull'evoluzione del Lago di Lugano. Aspetti limnologici. Programma quinquennale 1993–1997. Campagne 1996–97 e rapporto quinquennale 1993–1997. Commissione internazionale per la protezione delle acque italo-svizzere (ed.): 124 pp.

  • Lampert, W. & U. Sommer, 1997. Limnoecology: the Ecology of Lakes and Streams. Oxford-University-Press-Incorporated, New York: 382 pp.

    Google Scholar 

  • Lorenzen, C. J., 1967. Determination of Chlorophyll and Pheo-Pigments: spectrophotometric equations. Limnol.-Oceanogr. 12: 343–346.

    Google Scholar 

  • Lund, J. W. G., C. Kipling, & E. D. Le Cren, 1958. The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia 11: 143–170.

    Google Scholar 

  • Magurran, A. E., 1988. Ecological diversity and its measurement. Croom Helm, London: 179 pp.

    Google Scholar 

  • Marker, A. F. H., E. A. Nusch, H. Ray & B. Riemann, 1980. The measurement of photosynthetic pigments in freshwaters and standardization of methods: Conclusions and recommendations. Arch. Hydrobiol. Beih. 14: 91–106.

    Google Scholar 

  • Mayer, J. M. T. Dokulil, M. Salbrechter, M. Berger, T. Posch, G. Pfister, A. K. T. Kirschner, B. Velimirov, A. Steitz & T. Ulbricht, 1997. Seasonal successions and trophic relations between phytoplankton, zooplankton, ciliate and bacteria in a hypertrophic shallow lake in Vienna, Austria. Hydrobiologia 342: 165–174.

    Google Scholar 

  • Micheletti, S., F. Schanz & A. E. Walsby, 1998. The daily integral of photosynthesis by Planktothrix rubescens during summer stratification and autumnal mixing in Lake Zurich. New Phytol. 139: 233–246.

    Google Scholar 

  • Morabito, G. & P. Panzani, 1998. Popolamenti planctonici. Indagini sul fitoplancton. In: C.N.R. Istituto italiano di Idrobiologia. Ricerche sull'evoluzione del Lago Maggiore. Aspetti limnologici. Programma quinquennale 1993–1997. Campagna 1997 e relazione finale. Commissione internazionale per la protezione delle acque italo-svizzere (ed.): 48–50.

  • Mosello, R., A. Calderoni & R. De Bernardi, 1997. Le indagini sulla evoluzione dei laghi profondi sudalpini svolte dal CNR Istituto italiano di Idrobiologia. Documenta Ist. ital. Idrobiol. 61: 19–32.

    Google Scholar 

  • Mosello, R., M. C. Brizzio, L. Garibaldi, F. Buzzi, L. Colzani, E. Pizzotti & D. Mocellin, 1999. Attuali condizioni trofiche dei bacini di Como e Lecco del Lario. Acqua Aria, nov./dic.: 71–81.

  • OECD, 1982. Eutrophication of waters. Monitoring, assessment and control. OECD, Paris: 154 pp.

    Google Scholar 

  • Oliver, R. L. & A. E. Walsby, 1984. Direct evidence for the role of light-mediated gas vesicle collapse in the buoyancy regulation of Anabaena flos-aquae (cyanobacteria). Limnol. Oceanogr. 29: 879–886.

    Google Scholar 

  • Pollingher, U., 1990. Effects of latitude on phytoplankton composition and abundance in large lakes. In Tilzer, M. M. & C. Serruya (eds), Large Lakes. Ecological Structure and Function. Springer Verlag, Berlin: 368–402.

    Google Scholar 

  • Porter, K. G., 1973. Selective grazing and differential digestion of algae by zooplankton. Nature 244: 179–180.

    Google Scholar 

  • Ramón, G. & G. Moyá, 1984. Seasonal variations in the vertical distribution of Oscillatoria rubescens D.C. in the Gorg Blau reservoir, Spain. Verh. int. Ver. Limnol. 22: 1546–1549.

    Google Scholar 

  • Rawson, D. S., 1956. Algal indicators of trophic lake types. Limnol. Oceanogr. 1: 18–25.

    Google Scholar 

  • Reynolds, C. S., 1984. The Ecology of Freshwater Phytoplankton. Cambridge University Press, Cambridge: 384 pp.

    Google Scholar 

  • Reynolds, C. S., 1996. The plant life of the pelagic. Verh. int. Ver. Limnol. 26: 97–113.

    Google Scholar 

  • Reynolds, C. S., 1997. Vegetation processes in the pelagic: a model for ecosystem theory. Ecology Institute, Oldendorf: 371 pp.

    Google Scholar 

  • Reynolds, C. S., 1998. What factors influence the species composition of phytoplankton in lakes of different trophic status? Hydrobiologia 369/370 (Dev. Hydrobiol. 129): 11–26.

    Google Scholar 

  • Reynolds, C. S., 1999. Metabolic sensitivities of lacustrine ecosystems to anthropogenic forcing. Aquat. Sci. 61: 183–205.

    Google Scholar 

  • Reynolds, C. S. & A. E. Walsby, 1975. Water-blooms. Biol. Rev. 50: 437–481.

    Google Scholar 

  • Reynolds, C. S., J. G. Tundisi & K. Hino, 1983. Observations on a metalimnetic Lyngbya population in a stable stratified tropical lake (Lagoa Carioca, Eastern Brasil). Arch. Hydrobiol. 97: 7–17.

    Google Scholar 

  • Richerson, P. J., P. Neale, W. Wurtsbaugh, R. Alfaro & W. Vincent, 1986. Patterns of temporal variation in Lake Titicaca: a high altitude tropical lake. I. Background, physical and chemical processes and primary production. Hydrobiologia 138: 205–220.

    Google Scholar 

  • Rodhe, W., 1948. Environmental requirements of freshwater plankton algae. Symb. Bot. Upsaliensis 10: 1–149.

    Google Scholar 

  • Rott, E., 1981. Some results from phytoplankton counting intercalibrations. Schweiz. Z. Hydrol. 43: 34–62.

    Google Scholar 

  • Rott, E., 1984. Phytoplankton as biological parameter for the trophic characterization of lakes. Verh. int. Ver. Limnol. 22: 1078–1085.

    Google Scholar 

  • Ruggiu, D., 1983. Caratteristiche e comportamento del fitoplancton nei laghi profondi sudalpini. In Ambrosetti, W., L. Barbanti, R. Mosello, A. Rolla & D. Ruggiu (eds), Mescolamento, Caratteristiche Chimiche, Fitoplancton e Situazione trofica Nei Laghi Profondi Sudalpini. C.N.R.-P.F. "Promozione della Qualità dell'Ambiente", AQ/2/20: 105–143.

  • Ruggiu, D. & R. Mosello, 1984. Nutrient levels and phytoplankton characteristics in the deep souther alpine lakes. Verh. int. Ver. Limnol. 22: 1106–1112.

    Google Scholar 

  • Ruggiu, D., G. Morabito, P. Panzani & A. Pugnetti, 1997. Indagini sul fitoplancton. In: C.N.R. Istituto italiano di Idrobiologia. Ricerche sull'evoluzione del Lago Maggiore. Aspetti limnologici. Programma quinquennale 1993–1997 (Campagna, 1996). Commissione internazionale per la protezione delle acque italo-svizzere (ed.): 49–53.

  • Ruggiu, D., G. Morabito, P. Panzani & A. Pugnetti, 1998. Trends and relations among basic phytoplankton characteristics in the course of the long-term oligotrophication of Lake Maggiore (Italy). Hydrobiologia 369/370 (Dev. Hydrobiol. 129): 243–257.

    Google Scholar 

  • Salmaso, N., 1996. Seasonal variation in the composition and rate of change of the phytoplankton community in a deep subalpine lake (Lake Garda, Northern Italy). An application of nonmetric multidimensional scaling and cluster analysis. Hydrobiologia 337: 49–68.

    Google Scholar 

  • Salmaso, N. & F. Decet, 1997. Seasonal and interannual changes of chemical characteristics and phytoplankton in a mountain lake of the eastern Italian Alps (Lake Calaita, Trentino). Int. Rev. ges. Hydrobiol. 82: 15–31.

    Google Scholar 

  • Salmaso, N. & F. Decet, 1998. Interactions of physical, chemical and biological processes affecting the seasonality of mineral composition and nutrient cycling in the water column of a deep subalpine lake (Lake Garda, Northern Italy). Arch. Hydrobiol. 142: 385–414.

    Google Scholar 

  • Salmaso, N. & L. Naselli-Flores, 1999. Studies on the zooplankton of the deep subalpine Lake Garda. J. Limnol. 58: 66–76.

    Google Scholar 

  • Salmaso, N., F. Cavolo & P. Cordella, 1994. —Fioriture di Anabaena e Microcystis nel Lago di Garda. Eventi rilevati e caratterizzazione dei periodi di sviluppo. Acqua Aria 1: 17–28.

    Google Scholar 

  • Salmaso, N., F. Decet & P. Cordella, 1999. Understanding deep oligotrophic subalpine lakes for efficient management. Hydrobiologia 395/396 (Dev. Hydrobiol. 136): 253–263.

    Google Scholar 

  • Salmaso, N., F. Decet, M. Manfrin & P. Cordella, 1997. Ricerche limnologiche sul Lago di Garda (1991–1996). Documenta Ist. ital. Idrobiol. 61: 173–199.

    Google Scholar 

  • Saraceni, C. & D. Ruggiu, 1974. Techniques for sampling water and phytoplankton. In Vollenweider, R. A. (ed.), A Manual on Methods for Measuring Primary Production in Aquatic Environments. IBP Handbook 12, Blackwell, Oxford: 5–7.

    Google Scholar 

  • Sommer, U., 1986. The periodicity of phytoplankton in Lake Constance (Bodensee) in comparison to other deep lakes of central Europe. Hydrobiologia 138: 1–7.

    Google Scholar 

  • Sommer, U., 1987. Factors controlling the seasonal variation in phytoplankton species composition. A case study for a deep, nutrient rich lake. Prog. Phyc. Res. 5: 123–178.

    Google Scholar 

  • Sommer, U., 1988. Growth and survival strategies of planktonic diatoms. In Sandgren, C. D. (ed.), Growth and Reproductive Strategies of Freshwater Phytoplankton. Cambridge University Press, Cambridge: 227–260.

    Google Scholar 

  • Sommer, U., Z. M. Gliwicz, W. Lampert & A. Duncan, 1986. The PEG-model of seasonal succession of planktonic events in fresh waters. Arch. Hydrobiol. 106: 433–471.

    Google Scholar 

  • Sterner, R. W., 1989. Resource competition during seasonal succession toward dominance by cyanobacteria. Ecology 70: 229–245.

    Google Scholar 

  • Stockner, J. G. & K. S. Shortreed, 1988. Response of Anabaena and Synechococcus to manipulation of nitrogen:phosphorus ratios in a lake fertilisation experiment. Limnol. Oceanogr. 33: 1348–1361.

    Google Scholar 

  • Symoens, J. J., E. Kusel-Fetzmann & J. P. Descy, 1988. Algal communities of continental waters. In Symoens, J. J. (ed.), Vegetation of Inland Waters. Handbook of Vegetation Science 15/1, Kluwer Academic Publishers, Dordrecht, The Netherlands: 183–221.

    Google Scholar 

  • Talling, J. F., 1971. The underwater light climate as a controlling factor in the production ecology of freshwater phytoplankton. Mitt. int. Ver. Limnol. 19: 214–243.

    Google Scholar 

  • Tilman, D., 1977. Resource competition between planktonic algae: an experimental and theoretical approach. Ecology 58: 338–348.

    Google Scholar 

  • Tilman, D. & S. S. Kilham, 1976. Phosphate and silicate uptake and growth kinetics of the diatoms Asterionella formosa and Cyclotella meneghiniana in batch and semicontinuous culture. J. Phycol. 12: 375–383.

    Google Scholar 

  • Tilzer, M. M., 1990. Specific properties of large lakes. In Tilzer, M. M. & C. Serruya (eds), Large Lakes. Ecological Structure and Function. Springer Verlag, Berlin: 39–43.

    Google Scholar 

  • Tilzer, M. M. & C. Serruya, 1990. Large Lakes. Ecological Structure and Function. Springer Verlag, Berlin, 691 pp.

    Google Scholar 

  • Titman, D. (Tilman) & P. Kilham, 1976. Sinking in freshwater phytoplankton: some ecological implications of cell nutrient status and physical mixing processes. Limnol. Oceanogr. 21: 409–417.

    Google Scholar 

  • Trimbee, A. M. & E. E. Prepas, 1987. Evaluation of total phosphorus as a predictor of the relative biomass of blue-green algae with emphasis on Alberta lakes. Can. J. Fish. aquat. Sci. 44: 1337–1342.

    Google Scholar 

  • Walsby, A. E., A. Avery & F. Schanz, 1998. The critical pressures of gas vesicles in Planktothrix rubescens in relation to the depth of winter mixing in Lake Zurich, Switzerland. J. Plankton Res. 20: 1357–1375.

    Google Scholar 

  • Walsby, A. E., R. Kinsman, B. W. Ibelings & C. S. Reynolds, 1991. Highly buoyant colonies of the cyanobacterium Anabaena lemmermannii form persistent surface waterblooms. Arch. Hydrobiol. 121: 261–280.

    Google Scholar 

  • Watson, S. B., E. McCauley & J. A. Downing, 1997. Patterns in phytoplankton taxonomic composition across temperate lakes of differing nutrient status. Limnol. Oceanogr. 42: 487–495.

    Google Scholar 

  • Whittaker, R. H., 1962. Classification of natural communities. Bot. Rev. 28: 1–239.

    Google Scholar 

  • Wüest, A., W. Aeschbach-Hertig, H. Baur, M. Hofer, R. Kipfer & M. Schurter, 1992. Density structure and tritium-helium age of deep hypolimnetic water in the northern basin of Lake Lugano. Aquat. Sci. 54: 205–217.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salmaso, N. Factors affecting the seasonality and distribution of cyanobacteria and chlorophytes: a case study from the large lakes south of the Alps, with special reference to Lake Garda. Hydrobiologia 438, 43–63 (2000). https://doi.org/10.1023/A:1004157828049

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004157828049

Navigation