Skip to main content
Log in

The Failure of Protective Oxides on Plasma-Sprayed NiCrAlY Overlay Coatings

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The oxidation behavior in air of air-plasma sprayed (APS) overlay coatingsof Ni–25Cr–6Al–Y have been studied at 1100°C. Aprotective alumina scale developed after 5- to 10-hr exposure with, initially,parabolic growth kinetics. With protracted exposures (>100 hr),subparabolic behavior developed, associated with aluminum depletion withinthe coating caused, principally, by internal oxidation of the low-densityAPS structure. This depletion caused intrinsic chemical failure, manifestedby the formation of a layer of Cr,Al,Ni-rich oxide beneath the residualalumina layer. Associated with this process of chemical failure was theformation of a layer of porous Ni,Cr-rich oxide above the aluminalayer. Oxide spallation occurred by delamination within this layer duringcooling; the spallation sites tended to lie above protuberances in theunderlying coating. Initial spallation occurred at a critical temperaturedrop, which decreased rapidly with increasing exposure time. A nonrigorousmodel of this spallation process has been developed which envisages thatdelamination occurs by the propagation of an oxide void under the action ofout-of-plane tensile stresses developed during cooling. Agreement with thespallation data is encouraging and shows that the deterioration ofspallation resistance with exposure time arises not only because oxidethickness increases but also because the maximum void size within the porousoxide layer increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. W. Fairbanks and R. J. Hecht, Mater. Sci. Eng. 88, 321 (1987).

    Google Scholar 

  2. R. Keribar and T. Morel, Surf. Coatings Technol., 30, (1987) 63.

    Google Scholar 

  3. D. J. Wortman, B. A. Nagaraj, and E. C. Duderstadt, Mater. Sci. Eng. A121, 33 (1989).

    Google Scholar 

  4. W. A. Nelson and R. M. Orenstein, in Proc. TBC Workshop, Cleveland, Ohio, 1995, pp. 91-102

  5. A. Strawbridge, H. E. Evans, and C. B. Ponton, Mater. Sci. Forum 251-254, 365 (1997).

    Google Scholar 

  6. H. E. Evans, A. T. Donaldson, and T. C. Gilmour, Oxid. Met., in press.

  7. W. J Quadakkers and M. J. Bennett, Mater. Sci. Technol. 10, 126 (1994).

    Google Scholar 

  8. P. Niranatlumpong, C. B. Ponton, and H. E. Evans, in High Temperature Surface Engineering, Institute of Materials, London (in press).

  9. H. Hindam and D. P. Whittle, Oxid. Met. 18, 245 (1983).

    Google Scholar 

  10. H. E. Evans, D. J. Norfolk, and T. Swan, J. Electrochem. Soc. 125, 1180 (1978).

    Google Scholar 

  11. H. E. Evans, A. Strawbridge, R. A Carolan, and C. B. Ponton, Mater. Sci. Eng. A225, 1 (1997).

    Google Scholar 

  12. S. J. Bull, Oxid. Met. 49, 1 (1998).

    Google Scholar 

  13. I. S. Raju and J. C. Newman Jr., Eng. Fracture Mech. 11, 817 (1979).

    Google Scholar 

  14. O. H. Krikorian, Thermal Expansion of High Temperature Materials, University of California Report, UCRL-6132, 1960.

  15. J. A. Haynes, M. K. Ferber, and E. D. Rigney, Mater. High Temp., in press.

  16. G. K. Bansal and W. H. Duckworth, J. Amer. Ceram. Soc. 60, 304 (1977).

    Google Scholar 

  17. S. Suresh, C. F. Shih, A. Morrone, and N. P. O'Dewd, J. Amer. Ceram. Soc. 73, 1257 (1990).

    Google Scholar 

  18. M. M. Nagl, S. R. J. Saunders, W. T. Evans, and D. J. Hall, Corros. Sci. 35, 965 (1993).

    Google Scholar 

  19. M. Schütze, Int. J. Pressure Vessels Piping 47, 293 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niranatlumpong, P., Ponton, C.B. & Evans, H.E. The Failure of Protective Oxides on Plasma-Sprayed NiCrAlY Overlay Coatings. Oxidation of Metals 53, 241–258 (2000). https://doi.org/10.1023/A:1004549219013

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004549219013

Navigation