Skip to main content
Log in

Influence of Reducing Conditions on Solubility of Trace Metals in Contaminated Soils

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

Dissolved trace metals Cd, Pb, Zn, andother solutes were determined after reducingconditions have been imposed to samples of anagricultural polluted soil. The ploughed layer wassampled as undisturbed blocks for floodingexperiments, and sieved samples were incubated inaqueous suspensions at controlled pH (pH 6.2) underdifferent redox conditions. Redox potential and pH,concentrations of major and trace elements, andorganic and inorganic ligands, were measured in thesolutions. Their chemical speciation was calculated byusing the programme Soilchem.These experiments and calculations have shown that pHvariations definitively influence trace metalsolubility, whatever they are induced by reductivedissolution, organic acid formation, or otherprocesses, and that strong acidification can beobtained with well buffered soil when about 1%available carbon is anaerobically transformed intoorganic acids. The organic acids also intervene bycomplexation, particularly for Pb. On another hand,denitrification can limit these effects by consumingprotons and organic substances. Given a steady pH,reducing conditions enhance the mobility of tracemetals, at first by dissolution of manganic and ferricoxides; Pb appeared more sensitive to these processesthan Zn, and finally Cd. As a general rule,hydromorphy in a well-buffered contaminated soil at afirst step should increase the mobility of divalenttrace metals, by decreasing pH and reducing Mn and Feoxides, but prolonged flooding can lead to fix tracemetals again, rather by re-adsorption or precipitationphenomena than by formation of insoluble sulphides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alloway, B. J.: 1995, Heavy Metals in Soils, 2nd edn, Blackie Academic Professional, London, U.K., pp. 368.

    Google Scholar 

  • AFES: 1995, Référentiel Pédologique, D. Baize and M. C. Girard (eds.), INRA, Paris.

    Google Scholar 

  • Ahumada, I. T. and Schalscha, E. B.: 1993, Agrochimica 37, 281.

    Google Scholar 

  • Bartlett, R. J. and James, B. R.: 1993, Adv. Agron. 50, 151.

    Google Scholar 

  • Bingham, F. T., Page, A. L., Mahler, R. J. and Ganje, T. J.: 1976, Soil Sci. Soc. Amer. J. 40, 715.

    Google Scholar 

  • Bjerre, G. K. and Schierup, H. H.: 1985, Plant and Soil 88, 45.

    Google Scholar 

  • Bohn, H. L.: 1971, Soil Science 112, 39.

    Google Scholar 

  • Brennan, E. W. and Lindsay, W. L.: 1996, Geochim. Cosmochim. Acta 60, 3609.

    Google Scholar 

  • Brown, P. H., Dunemann, L., Schulz, R. and Marschner, H.: 1989, Z. Pflanzenernähr. Bodenk. 152, 85.

    Google Scholar 

  • Calmano, W., Hong, J. and Förstner, U.: 1993, Water Sci. Technol. 28, 223.

    Google Scholar 

  • Cambier, P., Lamy, I., Tercé, M., Bourgeois, S. and Bermond, A.: 1993, Rapport de Contrat SRETIE 90 232, Ministère de l'Environnement-INRA, Paris, France, 33 pp.

    Google Scholar 

  • Cambier, P. and Charlatchka, R.: 1998, in H. M. Selim and I. K. Iskandar (eds.), Fate and Transport of Heavy Metals in the Vadose Zone, Ann Arbor Press, Chelsea, Michigan, pp. 163–178.

    Google Scholar 

  • Charlatchka, R.: 1996. Ph.D. Thesis, University Paris 12, France, 200 pp.

  • Charlatchka, R., Cambier, P. and Bourgeois, S.: 1997, in R. Prost. (ed.), Contaminated Soils: Third Intern. Conf. Biogeochem. Trace Elements, 1995, INRA, Paris, France, pp. 159–174.

    Google Scholar 

  • Chanmugathas, P. and Bollag, J. M.: 1987, J. Environ. Quality 16, 161.

    Google Scholar 

  • Chuan, M. C., Shu, G. Y. and Liu, J. C.: 1996, Water, Air, and Soil Pollut. 90, 543.

    Google Scholar 

  • Christensen, T. H. and Kjelsen, P.: 1989, in Sanitary Landfilling: Process, Technology and Environmental Impact, pp. 29–49.

  • Davis, J. A., Fuller, C. C. and Cook, A. D.: 1987, Geochim. Cosmochim. Acta 51, 1477.

    Google Scholar 

  • Doner, H. E.: 1978, Soil Sci. Soc. Amer. J. 42, 882.

    Google Scholar 

  • Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A. and Smith, F.: 1956, Anal. Chem. 28, 350.

    Google Scholar 

  • Dudley, L. M., Mc Neal, B. L. and Baham, J. E.: 1986, J. Environ. Quality 15, 188.

    Google Scholar 

  • Dutta, D., Mandal, B. and Mandal, L. N.: 1989, Soil Science 147, 187.

    Google Scholar 

  • Fedorov, V. A., Hohlova, A. I. and Tchernicova, G. E.: 1976, Coordinacionaya himia 2(8), 1027.

    Google Scholar 

  • Firestone, M. K., Smith, M. S., Firestone, R. B. and Tiedje, J. M.: 1979, Soil Sci. Soc. Amer. J. 43, 1140.

    Google Scholar 

  • Förstner, U.: 1991, in G. H. Bolt et al. (eds.), Interaction at the Soil Colloid - Soil Solution Interface, NATO ASI series, Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 543–582.

    Google Scholar 

  • Förstner, U.: 1987, in J. W. Patterson and R. Passino (eds.), Metal Speciation, Separation, and Recovery, Lewis Publishers Inc., Michigan, pp. 3–26.

    Google Scholar 

  • Francis, J. A. and Dodge, C. J.: 1990, Environ. Sci. Technol. 24, 373.

    Google Scholar 

  • Gambrell, R. P., Khalid, R. A. and Patrick Jr., W. H.: 1980, Am. Chem. Soc. 14(4), 431.

    Google Scholar 

  • Ghanem, S. A. and Mikkelsen, D. S.: 1987, Commun. Soil Sci. Plant Anal. 18, 1217.

    Google Scholar 

  • Hirsch, D. and Banin, A.: 1990, J. Environ. Quality 19, 366.

    Google Scholar 

  • Huaiman, C.: 1984, Acta Pedologica Sinica 21(3), 258.

    Google Scholar 

  • Iu, K. L., Pulford, I. D. and Duncan, H. J.: 1981, Plant and Soil 59, 327.

    Google Scholar 

  • Iu, K. L., Pulford, I. D. and Duncan, H. J.: 1982, Plant and Soil 66, 423.

    Google Scholar 

  • Jandik, P. and Bonn, G.: 1993, Capillary Electrophoresis of Small Molecules and Ions, VCH, New York, N.Y., U.S.A., 298 p., p. 260.

    Google Scholar 

  • Kabata-Pendias A. and Pendias H.: 1992. Trace Elements in Soils and Plants, CRC Press, Boca Raton, Florida, U.S.A., 365 p.

    Google Scholar 

  • Khalid, R. A., Gambrell, R. P. and Patrick Jr., W. H.: 1981, J. Environ. Quality 10, 523.

    Google Scholar 

  • Kinniburgh, D. G. and Jackson, M. L.: 1981, in M. A. Anderson and A. J. Rubin (eds.), Adsorption of Inorganic at Solid-Liquid Interfaces, Ann Arbor Sci., Ann Arbor, Michigan, U.S.A., pp. 91–160.

    Google Scholar 

  • Krumbein, W. E. and Swart, P. K.: 1983, in W. E. Krumbein (ed.), Microbial Geochemistry, Blackwell Scientific, London, U.K., pp. 5–62.

    Google Scholar 

  • Lamy, I., Cambier P. and Bourgeois, S.: 1994, Environ. Geochem. Health 16, 1.

    Google Scholar 

  • Lefebvre-Drouet, E. and Bétrémieux, R.: 1984, Science du Sol, 213.

  • Letey, J., Valoras, N., Hadas A. and Focht, D. D.: 1980, J. Environ. Quality 9, 227.

    Google Scholar 

  • Lindsay, W. L.: 1979, Chemical Equilibria in Soils, John Wiley & Sons, New York, NY, U.S.A., p. 376.

    Google Scholar 

  • Ministère de l'Environnement: 1994, Recensement des Sites et Sols Pollués, DPPR, Paris, France.

    Google Scholar 

  • Mench, M. J., Didier, V. L., Löffler, M., Gomez, A. and Masson, P.: 1994, J. Environ. Quality 23(1), 58.

    Google Scholar 

  • Moalla, S. N. and Pulford, I. D.: 1995, Soil Use and Management 11, 94.

    Google Scholar 

  • Patrick Jr., W. H., Williams, B. G. and Moraghan, J. T.: 1973, Soil Sci. Soc. Amer. Proc. 37, 331.

    Google Scholar 

  • Ponnamperuma, F. N.: 1972, Adv. Agron. 24, 29.

    Google Scholar 

  • Reddy, C. N. and Patrick Jr., W. H.: 1977, J. Environ. Quality 6(3), 259.

    Google Scholar 

  • Sappin-Didier, V.: 1995, Ph.D. Thesis, Université de Bordeaux, France.

  • Satawathananont, S., Patrick Jr., W. H. and Moore, P. A.: 1991, Plant and Soil 133, 281.

    Google Scholar 

  • Schwab, A. P. and Lindsay, W. L.: 1983, Soil Sci. Soc. Am. J. 47, 217.

    Google Scholar 

  • Silen, L. G. and Martel, A. E.: 1971, Stability Constants of Metal-Ion Complexes, Chemical Society, London, U.K.

    Google Scholar 

  • Sposito, G.: 1981, The Thermodynamics of Soil Solutions, Clarendon Press, New York, NY, U.S.A.

    Google Scholar 

  • Sposito, G. and Coves, J.: 1988, Soilchem: A Computer Program for the Calculation of Chemical Speciation in Soils, University of California Riverside and Berkeley, California, U.S.A.

    Google Scholar 

  • Stumm, W. and Morgan, J.: 1981, Aquatic Chemistry. An Introduction Emphasizing Chemical Equilibria in Natural Waters, 2nd edn, John Wiley & Sons, New York, NY, U.S.A.

    Google Scholar 

  • Tack, F. M., Callewaert, O. W. J. J. and Verloo, M. G.: 1996, Environ. Pollut. 91, 199.

    Google Scholar 

  • Tamura, K.: 1991, J. Physical Chem. 95, 3425.

    Google Scholar 

  • Welch, J. E. and Lund, L. J.: 1987, J. Environ. Quality 16, 403.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Charlatchka, R., Cambier, P. Influence of Reducing Conditions on Solubility of Trace Metals in Contaminated Soils. Water, Air, & Soil Pollution 118, 143–168 (2000). https://doi.org/10.1023/A:1005195920876

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005195920876

Navigation