Skip to main content
Log in

Free-radical polymerization of acrylamide by manganese peroxidase produced by the white-rot basidiomycete Bjerkandera adusta

  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Acrylamide was polymerized to give polyacrylamide using manganese peroxidase (MnP) produced by the basidiomycete Bjerkandera adusta. The molecular weight of the polymer synthesized by MnP was 155000, higher than those obtained with other reaction systems using horseradish peroxidase and a redox initiator. The 13C-NMR spectrum showed that polyacrylamide was atactic. Electron spin resonance analysis revealed that 2,4-pentanedione added as an initiator was first oxidized to generate a carbon-centered radical, which initiated radical additive polymerization of acrylamide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akkara JA, Senecal KJ, Kaplan D (1991) Synthesis and characterization of polymers produced by horseradish peroxidase in dioxane. J. Polym. Sci. Part A: Polym. Chem. 29: 1561-1574.

    Google Scholar 

  • Aizawa M, Wang L, Shinohara H, Ikariyama Y (1990) Enzymatic synthesis of polyaniline film using a copper-containing oxidoreductase: Bilirubin oxidase. J. Biotechnol. 14: 301-310.

    PubMed  Google Scholar 

  • Dordick JH, Marletta MA, Klibanov AM (1987) Polymerization of phenols catalyzed by peroxidase in non-aqueous media. Biotechnol. Bioeng. 30: 31-36.

    Google Scholar 

  • Dzedzyulya EI, Bekker EG, Reshetnikova IA (1996) Lignosulfonate polymerization by Mn2+-dependent peroxidase from the fungus Bjerkandera adusta. Biochemistry (Moscow) 61: 1201-1205.

    Google Scholar 

  • Emery O, Lalot T, Brigodiot M, Marechal E (1997) Freeradical polymerization of acrylamide by horseradish peroxidasemediated initiation. J. Polym. Sci.: Part A: Polym. Chem. 35: 3331-3333.

    Google Scholar 

  • Gold MH, Alic M (1993) Molecular biology of the lignin-degrading basidiomycete Phanerochaete chrysosporium. Microbiol. Rev. 57: 605-622.

    Google Scholar 

  • Greenberg AR, Kusy RP (1980) Influence of crosslinking on the glass transtion of poly(acrylic acid). J. Appl. Polym. Sci. 25: 1785-1788.

    Google Scholar 

  • Hikichi K, Ikura M, Yasuda M (1988) 13C Nuclear magnetic resonance studies of poly(acrylamide). Polymer. J. 20: 851-859.

    Google Scholar 

  • Ikeda RT, Uyama H, Kobayashi S (1998) Laccase-catalyzed polymerization of acrylamide. Macromol. Rapid Commun. 19: 423-425.

    Google Scholar 

  • Iwahara K, Hirata M, Honda Y, Watanabe T, Kuwahara M (2000) Poyerization of guaiacol by lignin-degrading manganese peroxidase from Bjerkandera adustain aqueous organic solvents. Appl. Microbiol. Biotechnol., in press.

  • Iwata H, Hata Y, Matsuda T (1991) Initiation of radical polymerization by glucose oxidase utilizing dissolved oxygen. J. Polym. Sci.: Part A: Polymer. Chem. 29: 1217-1218.

    Google Scholar 

  • Kofujita H, Matsushima A, Ohsaki T, Asada Y, Kuwahara M (1991) Alkyl-aryl cleavage of phenolic β-O-4 lignin substructure model compound by Mn (II)-peroxidase isolated from Pleurotus ostreatus. Mokuzai Gakkaishi 37: 555-561.

    Google Scholar 

  • Mottley C, Robinson RE, Mason RP (1991) Free radical formation in the oxidation Malondialdehide and acetylacetone by peroxidase enzymes. Arch. Biochem. Biophys. 289: 153-160.

    PubMed  Google Scholar 

  • Oguchi T, Tawaki S, Uyama H, Kobayashi S (1999) Soluble polyphenol. Macromol. Rapid Commun. 20: 401-403.

    Google Scholar 

  • Palma C, Martínez AT, Lema JM, Martínez MJ (2000) Different fungal manganese-oxidizing peroxidases: a comparison between Bjerkanderasp. and Phanerochaete chrysosporium. J. Biotechnol. 77: 235-245.

    PubMed  Google Scholar 

  • Rao AM, John VT, Gonzalez RD, Akkara JA, Kaplan DL (1993) Catalytic and interfacial aspects of enzymatic polymer synthesis in reversed micellar systems. Biotechnol. Bioeng. 41: 531-540.

    Google Scholar 

  • Rüttimann-Johnson C, Lamar RT (1996) Polymerization of pentachlorophenol and ferulic acid by fungal extracellular lignindegrading enzymes. Appl. Environ. Microbiol. 62: 3890-3893.

    PubMed  Google Scholar 

  • Uyama H, Kurioka H, Sugihara J, Komatsu I, Kobayashi S (1995) Peroxidase-catalyzed oxidative polymerization of cresols to a new family of polyphenols. Bull. Chem. Soc. Japan 68: 3209-3214.

    Google Scholar 

  • Wariishi H, Valli K, Gold MH (1991) In vitrodepolymerization of lignin by manganese peroxidase of Phanerochaete chrysosporium. Biochem. Biophys. Res. Commun. 176: 269-275.

    PubMed  Google Scholar 

  • Yoshida S, Chatani A, Tanahashi M, Watanabe T, Honda Y, Kuwahara M (1998) Preparation of synthetic lignin by manganese peroxidase of Bjerkandera adustain organic solvents. Holzfolschung 52: 282-286.

    Google Scholar 

  • Yoshida S, Yonehara S, Minami S, Ha H-C, Iwahara K, Tanahashi M, Watanabe T, Honda Y, Kuwahara M (1996) Production and characterization of ligninolytic enzymes of Bjerkandera adustagrown on wood meal/wheat bran by a rotary-solid fermenter. Mycoscience 37: 417-425.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iwahara, K., Hirata, M., Honda, Y. et al. Free-radical polymerization of acrylamide by manganese peroxidase produced by the white-rot basidiomycete Bjerkandera adusta. Biotechnology Letters 22, 1355–1361 (2000). https://doi.org/10.1023/A:1005698415575

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005698415575

Navigation