Skip to main content
Log in

Temperature and Pressure Dependencies of Thermal Transport Properties of Rocks: Implications for Uncertainties in Thermal Lithosphere Models and new Laboratory Measurements of High-Grade Rocks in the Central Fennoscandian Shield

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

Measurements on thermal conductivity and diffusivity as functions of temperature (up to 1150 K) and pressure (up to 1000 MPa) are presented for Archaean and Proterozoic mafic high-grade rocks metamorphosed in middle and lower crustal pressures, and situated in eastern Finland, central Fennoscandian Shield. Decrease of 12–20% in conductivity and 40–55% in diffusivity was recorded between room temperature and 1150 K, which can be considered as typical of phonon conductivity. Radiative heat transfer effects were not detected in these samples. Pressure dependencies of the samples are weak if compared to crystalline rocks in general, but relatively typical for mafic rocks.

The temperature and pressure dependencies of thermal transport properties (data from literature and the present study) were applied in an uncertainty analysis of lithospheric conductive thermal modellings with random (Monte Carlo) simulations using a 4-layer model representative of shield lithosphere. Model parameters were varied according to predetermined probability functions and standard deviations were calculated for lithospheric temperature and heat flow density after 1500 independent simulations. The results suggest that the variations (uncertainties) in calculated temperature and heat flow density values due to variations in the temperature and pressure dependencies of conductivity are minor in comparison to the effects produced by typical variations in the room temperature value of conductivity, heat production rate or lower boundary condition values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Babuska, V., Plomerova, J., and Pajdusak, P.: 1988, 'Seismologically determined deep lithosphere structure in Fennoscandia', Geologiska Föreningens i Stockholm Förhandlingar (GFF) 110, 380-382.

    Google Scholar 

  • Birch, F. and Clark, H.: 1940, 'Thermal conductivity of rocks and its dependence upon temperature and composition', Amer. J. Sci. 238, 529-558 and 613-635

    Google Scholar 

  • Calcagnile, G.: 1982, 'The lithosphere-asthenosphere system in Fennoscandia', Tectonophysics 90, 19-35.

    Google Scholar 

  • Cermak, V. and Rybach, L.: 1982, 'Thermal conductivity and specific heat of minerals and rocks', In: G. Angenheister (ed.), Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology, New Series, Group V (Geophysics and Space Research), Vol. 1a (Physical Properties of Rocks), Springer, Berlin, pp. 305-343.

    Google Scholar 

  • Christensen, N.I. and Mooney, W.D.: 1995, 'Seismic velocity structure and composition of the continental crust: A global view', J. Geophys. Res. 100, 9761-9788.

    Google Scholar 

  • Clauser, C.: 1988a, 'Opacity — The concept of radiative thermal conductivity', In: R. Haenel, L. Rybach, and L. Stegena (eds.), Handbook of Terrestrial Heat-Flow Density Determination, Kluwer, Dordrecht, pp. 143-165.

    Google Scholar 

  • Clauser, C.: 1988b, 'Untersuchungen zur Trennung der konduktiven und konvektiven Anteile im Wärmetransport in einem Sedimentbecken am Beispiel des Oberrheintalgrabens', Fortschritt-Berichte VDI, Reihe 19, Nr. 28, 124 p. (Doctoral dissertation).

  • Clauser, C. and Huenges, E.: 1995, 'Thermal conductivity of rocks and minerals', In: T.J. Ahrens (ed.), A Handbook of Physical Constants, Rock Physics and Phase Relations, Vol. 3, Americal Geophysical Union, Washington DC, pp. 105-125.

    Google Scholar 

  • Clauser, C. and Villinger, H.: 1990, 'Analysis of conductive and convective heat transfer in a sedimentary basin, demonstrated for the Rheingraben', Geophys. J. Int. 100, 393-414.

    Google Scholar 

  • Forsythe, G.E., Malcolm, M.A., and Moler, C.B.: 1977, 'Computer methods for mathematical computations', Prentice-Hall, Englewood Cliffs, NJ, 230 p.

    Google Scholar 

  • Guggisberg, B. and Berthelsen, A.: 1987, 'A two-dimensional velocity model for the lithosphere beneath the Baltic Shield and its possible tectonic significance', Terra Cognita 7, 631-638.

    Google Scholar 

  • Hölttä, P.: 1996, 'Tulivatko kimberliittien sisältämät granuliittixenoliitit nykyisestä alakuoresta?', In: P. Peltonen, K. Korsman, and R. Salminen (eds.), Tutkimuksia geologian alalta II, Annales Turkuensis, Ser. C, 126, pp. 97-105 (in Finnish).

  • Hölttä, P.: 1997, 'Geochemical characteristics of granulite facies rocks in the Archaean Varpaisjärvi area, central Fennoscandian Shield', Lithos 40, 31-53.

    Google Scholar 

  • Hölttä, P.: 1988, 'Metamorphic zones and the evolution of granulite grade metamorphism in the early Proterozoic Pielavesi area, central Finland', Geol. Surv. Finland, Bull. 344, 50.

    Google Scholar 

  • Hölttä, P. and Paavola, J.: 1989, 'Kornerupine-bearing granulites and evidence of uplift in the Archaean Varpaisjärvi area, central Finland', Geol. Surv. Finland, Spec. Paper 10, 11-18.

    Google Scholar 

  • Horai, K. and Susaki, J., 1989, 'The effect of pressure on the thermal conductivity of silicate rocks up to 12 kbar', Phys. Earth Planet. Inter. 55, 292-305.

    Google Scholar 

  • Järvimäki, P.: 1968, 'Geotermisistä mittauksista Suomessa (On geothermal measurements in Finland)', Master's thesis, University of Helsinki, Institute of Geophysics, 30 p. (in Finnish).

  • Jokinen, J. and Kukkonen, I.T.: 1999a, 'Random modelling of lithospheric thermal regime: forward simulations applied in uncertainty analysis', Tectonophysics (in press).

  • Jokinen, J. and Kukkonen, I.T.: 1999b, 'Inverse simulation of lithospheric thermal regime using the Monte Carlo method', Tectonophysics (in press).

  • Jõeleht, A. and Kukkonen, I.T.: 1998, 'Thermal properties of granulite facies rocks in the Precambrian of Estonia and Finland', Tectonophysics 291, 195-203.

    Google Scholar 

  • Kempton, P.D., Downes, H., Sharkov, E.V., Vetrin, V.R., Ionov, D.A., Carswell, D.A., and Beard, A.: 1995, 'Petrology and geochemistry of xenoliths from the northern Baltic Shield: Evidence for partial melting and metasomatism in the lower crust beneath an Archaean terrane', Lithos 36, 157-184.

    Google Scholar 

  • Kukkonen, I.T.: 1998, 'Temperature and heat flow density in a thick cratonic lithosphere: The Sveka transect, central Fennoscandian Shield', J. Geodyn. 26, 111-136.

    Google Scholar 

  • Kukkonen, I.T. and Jõeleht, A.: 1996, 'Geothermal modelling of the lithosphere in the central Baltic Shield and its southern slope', Tectonophysics 255, 25-45.

    Google Scholar 

  • Kukkonen, I.T. and Lindberg, A.: 1995, 'Thermal conductivity of rocks at the TVO investigation sites Olkiluoto, Romuvaara and Kivetty', Nuclear Waste Commission of Finnish Power Companies, Helsinki, Report YJT-95-08, 29 p.

  • Paavola, J.: 1984, 'On the Archaean high-grade metamorphic rocks in the Varpaisjärvi area, central Finland', Geol. Surv. Finland, Bull. 327, 33 p.

  • Paavola, J.: 1986, 'A communication on the U-Pb and K-Ar age relations of the Archaean basement in the Lapinlahti-Varpaisjärvi area, central Finland', Geol. Surv. Finland, Bull. 339, 7-15.

    Google Scholar 

  • Percival, J.A., Fountain, D.M., and Salisbury, M.H.: 1992, 'Exposed crustal cross sections as windows on the lower crust', In: D.M. Fountain, R. Arculus, and R.W. Kay (eds.), Continental Lower Crust, Developments in Geotectonics, Vol. 23, Elsevier, Amsterdam, pp. 317-362.

    Google Scholar 

  • Press, W.H., Flannery, B.P., Teukolsky, S.A., and Vetterling, W.T.: 1988, Numerical Recipes in C, Cambridge University Press, Cambridge, 735 p.

    Google Scholar 

  • Pribnow, D., Williams, C.F., Sass, J.H., and Keating, R.: 1996, 'Thermal conductivity of water-saturated rocks from the KTB pilot hole at temperatures of 25 to 300 _C', Geophys. Res. Lett. 23, 391-394.

    Google Scholar 

  • Puranen, M. and Puranen, R.: 1977, 'Apparatus for the measurement of magnetic susceptibility and its anisotropy', Geol. Surv. Finland, Rep. Investigation 28, 46 p.

  • Puranen, R., Sulkanen, K., Poikonen, A., Nissinen, R., Simelius, P., and Harinen, L.: 1993, 'User's manual for a computerized petrophysics laboratory', Geol. Surv. Finland, Dept. of Geophys., Rep. Q19.1/27/93/1, 50 p.

  • Rudnick, R. L. and Fountain, D. M.: 1995, 'Nature and composition of the continental crust: a lower crustal perspective', Rev. Geophys. 33, 267-309.

    Google Scholar 

  • Schatz, J.F. and Simmons, G.: 1972, 'Thermal conductivity of earth materials at high temperatures', J. Geophys. Res. 77, 6966-6983.

    Google Scholar 

  • Seipold, U.: 1988, 'Simultaneous measurements of thermal diffusivity and thermal conductivity under high pressure using thermal pulses of finite length', High Temperatures — High Pressures 20, 609-613.

    Google Scholar 

  • Seipold, U.: 1995, 'The variation of thermal transport properties in the Earth's crust', J. Geodyn. 20, 145-154.

    Google Scholar 

  • Seipold, U.: 1998, 'The temperature dependence of the thermal transport properties of crystalline rocks-a generalization', Tectonophysics 291, 161-171.

    Google Scholar 

  • Seipold, U., Mueller, H.-J., and Tuisku, P.: 1998, Principle differences in the pressure dependence of thermal and elastic properties of crystalline rocks', Phys. Chem. Earth 23, 357-360.

    Google Scholar 

  • Zoth, G. and Haenel, R.: 1988, 'Thermal conductivity', In: R. Haenel, L. Rybach, and L. Stegena (eds.), Handbook of Terrestrial Heat-Flow Density Determination, Kluwer, Dordrecht, pp. 449-466.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kukkonen, I., Jokinen, J. & Seipold, U. Temperature and Pressure Dependencies of Thermal Transport Properties of Rocks: Implications for Uncertainties in Thermal Lithosphere Models and new Laboratory Measurements of High-Grade Rocks in the Central Fennoscandian Shield. Surveys in Geophysics 20, 33–59 (1999). https://doi.org/10.1023/A:1006655023894

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006655023894

Navigation