Skip to main content
Log in

Ferroelectric Tuning of Planar and Bulk Microwave Devices

  • Published:
Journal of Superconductivity Aims and scope Submit manuscript

Abstract

Benefits of ferroelectric component applications at microwaves is discussed. Experience recently gained in the high-temperature film-production technology has been used for obtaining high-quality ferroelectric tunable components. The disk made from bulk SrTiO3 single crystal covered with double-sided YBa2Cu3Y7 films was used as a high-quality TM010 mode tunable resonator. Planar structures containing thin film ferroelectric layers: planar capacitor, sandwich capacitor, coplanar line, and fin line have been studied. Modeling dielectric response of low-temperature incipient ferroelectrics (SrTiO3, KTaO3) has been applied for simulation of tunable planar structures. The quality factor of a tunable component (QFCT) is suggested to characterize the validity of the component for practical applications. The high-quality planar capacitors are pioneered for the applications. The wide frequency band fin line phase shifter has been studied and simulated. The prospects for applications of ferroelectric planar structures at room temperature is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. Di Domenico, D. A. Johnson, and R. H. Pantell, Ferroelectric garmonic generator and the large-signal microwave characteristics of ferroelectric ceramic, J. Appl. Phys. 33(5), 1697–1706 (1962).

    Google Scholar 

  2. Yu. M. Poplavko, Electrically controlled ferroceramic devices at microwaves, Radio Eng. Electr. (Moscow, in Russian) 7(8), 1458–1462 (1962).

    Google Scholar 

  3. K. M. Johnson, Variation of dielectric constant with voltage in ferroelectric ceramics, J. Appl. Phys. 33(9), 2826–2831 (1962).

    Google Scholar 

  4. Yu. M. Poplavko, Ferroelectric with controlled dielectric permittivity in a wave guide, Radio Eng. (Moscow, in Russian) 18(10), 22–27 (1963).

    Google Scholar 

  5. S. N. Das, Quality of a ferroelectric material, IEEE Trans. MTT 12(7), 440–445 (1964).

    Google Scholar 

  6. K. Bethe, Uer das Mikrowellenverhalten nichlineare Dielectrika, Philips Res. Rep. (Suppl.), No. 2 (1970).

  7. O. G. Vendik, I. G. Mironenko, and L. T. Ter-Martirosyan, Some properties and applications of ferroelectrics at microwaves, J. Phys. 33(4), C2, 277–279 (1972).

    Google Scholar 

  8. O. G. Vendik, Dielectric nonlinearity of the displacive ferroelectrics at UHF, Ferroelectrics 12, 85–90 (1976).

    Google Scholar 

  9. O. G. Vendik, Ferroelectrics at microwaves (in Russian) (“Sovyetskoye Radio,” Moscow, 1979).

    Google Scholar 

  10. O. G. Vendik, Technologie und Anwendung Ferroelectrischer Schichten in der Mikroelektrinik, Nachrichtentechnik-Elektronik 30(12), 504–512 (1980).

    Google Scholar 

  11. O. G. Vendik, I. G. Mironenko, and L. T. Ter-Martirosyan, Superconductors spur application of ferroelectric films, Microwaves RF 33(7), 67–70 (1994).

    Google Scholar 

  12. O. G. Vendik, L. T. Ter-Martirosyan, A. I. Dedyk, S. F. Karmanenko, and R. A. Chakalov, High-T c superconductivity: New applications of ferroelectrics at microwave frequencies, Ferroelectrics 144(1–4), 33–43 (1993).

    Google Scholar 

  13. D. Galt, C. Price, J. A. Beall, and R. H. Ono, Characterization of tunable thin film microwave YBa2Cu3O7−x /SrTiO3 coplanar capacitor, Appl. Phys. Lett. 63(22), 3076–3080 (1993).

    Google Scholar 

  14. S. S. Gevorgian, D. I. Kaparkov, and O. G. Vendik, Electrically controlled HTSC/ferroelectric coplanar waveguide, IEEE Proc.-Microw. Antennas Propag. 141(6), 501–503 (1994).

    Google Scholar 

  15. T. Venkatasan, L. Nazar, X. D. Wu, and A. Inam, High T c thin films: A forerunner to the metal-oxide revolution, Solid State Technol. 32(8), 143–145 (1989).

    Google Scholar 

  16. O. G. Vendik, E. Kollberg, S. S. Gevorgian, A. B. Kozyrev, and O. I. Soldatenkov, 1 GHz tunable resonator on bulk SrTiO3 single crystal plated with YBa2Cu3O7 films, Electr. Lett. 31(8), 654–656 (1995).

    Google Scholar 

  17. O. G. Vendik, E. K. Hollmann, A. G. Zaitsev, D. G. Rauser, and P. K. Petrov, Preparation and properties of a capacitor structure formed by double-sided YBa2Cu3O7−x films on SrTiO3 substrate. J. Phys. D: Appl. Phys. 28, 1457–1460 (1995).

    Google Scholar 

  18. S. Gevorgian, E. Carlsson, E. Wikborg et al., Lower modes of YBCO/STO/YBCO circular disk resonators, IEEE Trans. MTT 44(10), 1738–1741 (1996).

    Google Scholar 

  19. S. Gevorgian, E. Carlsson, E. Wikborg, and E. Kollberg, Tunable microwave devices based on bulk and thin films ferroelectrics, ISIF'98, Integr. Ferroelectr. (in press).

  20. O. G. Vendik, A. N. Rogatchev, and L. T. Ter-Martirosyan, High voltage pulse tuning of strontium titanate TM010 disk resonator, Electr. Lett. 34, 1033–1034 (1998).

    Google Scholar 

  21. O. G. Vendik and E. Kollberg, Software models HTSC microstrip and coplanar lines, Microwave RF 32(7), 118–120 (1993).

    Google Scholar 

  22. O. G. Vendik and S. P. Zubko, Modeling the dielectric response of incipient ferroelectrics, J. Appl. Phys. 82(9), 4475–4483 (1997).

    Google Scholar 

  23. O. G. Vendik, L. T. Ter-Martirosyan, and S. P. Zubko, Microwave losses in incipient ferroelectrics as functions of the temperature and the biasing field, J. Appl. Phys. 84, 993–998 (1998).

    Google Scholar 

  24. O. G. Vendik, E. F. Carlsson, P. K. Petrov et al., HTS/ferroelectric CPW structures for voltage tunable phase shifters, 27th Eur. Microwave Conf. 1, 196–202 (1997).

    Google Scholar 

  25. E. F. Carlsson, High Temperature Superconducting and tunable Ferroelectric Devices, PhD thesis, Chalmers University of Technology, Goteborg (1998).

    Google Scholar 

  26. A. V. Ivanov, A. B. Kozyrev, and O. I. Soldatenkov, Dielectric properties of planar ferroelectric varactors at microwaves, 5th International Student Seminar on High Temperature Superconductors at Microwaves (St. Petersburg Electrotechnical University, May 25–27, 1998).

  27. A. B. Kozyrev, O. I. Soldatenkov, and A. M. Prudan, Ferroelectric Planar Capacitors (Electrotechnical University, St. Petersburg Electrotechnical University (unpublished).

  28. O. G. Vendik, G. D. Loos, and L. T. Ter-Martirosyan, Planar ferroelectric capacitors for the microwave devices, Radio Eng. Electr. (Moscow, in Russian) 17(10), 2241–2244 (1972).

    Google Scholar 

  29. O. G. Vendik, L. T. Ter-Martirosyan et al., Cooled parametric amplifier on strontium titanate, Radio Eng. Electr. (Moscow, in Russian), 17(9), 1981–1984 (1972).

    Google Scholar 

  30. E. K. Hollmann, A. V. Ivanov, A. B. Kozyrev, V. E. Loginov, P. K. Petrov, O. I. Soldatenkov, A. V. Tumarkin, and O. G. Vendik, Evaluation of the tunability and insertion loss of YBa2Cu3O7−x /SrTiO3 structures for microwave applications, NATO Book Series Microwave Physics and Technique (NATO Advanced Research Workshop, Bulgaria, 1996).

  31. P. K. Petrov, E. F. Carlsson, P. Larsson, M. Friesel, and Z. G. Ivanov, Improved SrTiO3 multilayers for microwave application: Growth and properties, J. Appl. Phys. 84, 3134–3140 (1998).

    Google Scholar 

  32. A. B. Kozyrev, V. N. Keis, G. Koepf et al., Procedure of microwave investigations of ferroelectric films and tunable microwave devices based on ferroelectric films, Microelectr. Eng. 29, 257–260 (1995).

    Google Scholar 

  33. A. B. Kozyrev, O. I. Soldatenkov, O. Y. Buslov et al., Ferroelectric films: Nonlinear properties and applications in microwave devices, 26th Eur. Microwave Conf. 2, 1020–1025 (1997).

    Google Scholar 

  34. A. B. Kozyrev, E. K. Hollmann, A. V. Ivanov et al., Microwave properties of YBa2Cu3O7−x /SrTiO3 planar capacitors, Integr. Ferroelect. 17, 257–262 (1997).

    Google Scholar 

  35. A. B. Kozyrev, T. B. Samoilova, E. K. Hollmann et al., Nonlinear properties of SrTiO3 films at microwave frequencies, Integr. Ferroelectr. 17, 263–271 (1997).

    Google Scholar 

  36. M. Izuha, K. Abe, M. Koike, S. Takeno, and N. Fukushima, Appl. Phys. Lett. 70, 1405–1407 (1997).

    Google Scholar 

  37. M. Izuha, K. Abe, and N. Fukushima, Jpn. J. Appl. Phys. (Pt. 1) 36, 5866–5870 (1997).

    Google Scholar 

  38. H.-J. Cho, S. Oh, C. S. Kang et al., Appl. Phys. Lett. 71, 3221–3223 (1997).

    Google Scholar 

  39. A. T. Findikoglu, Q. X. Jia, I. H. Campbell et al., Appl. Phys. Lett. 66(26), 3674–3677 (1995).

    Google Scholar 

  40. W. Prusseit, L. A. Boatner, and D. Rytz, Epitaxial YBa2Cu3O7 growth on KTaO3 (001) single crystals, Appl. Phys. Lett. 63(24), 3376–3378 (1993).

    Google Scholar 

  41. M. E. Lines and A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Clarendon Press, Oxford, 1977).

    Google Scholar 

  42. O. G. Vendik and S. P. Zubko, Phenomenological description of the permittivity of strontium titanate as a function of applied electric field and temperature, Zh. Tech. Fiz. 67(3), 25–32 (1997) [Technical Phys. 42(3), 278–285 (1997)].

    Google Scholar 

  43. O. G. Vendik and L. M. Platonova, J. Phys. Soc. of Jpn. 28(Suppl.), 61–63 (1970).

    Google Scholar 

  44. O. G. Vendik and L. M. Platonova, Influence of charged defects on dielectric properties of ferroelectric materials, Fiz. Tverd. Tela (Leningrad) 13(6), 1617–1624 (1971) [Sov. Phys. Solid State 13(6), 1353–1360 (1971)].

    Google Scholar 

  45. S. S. Gevorgian, L. J. Peter Linner, E. L. Kollberg, CAD models for shielded multilayered CPW, IEEE Trans. MTT 43(4), 772–779 (1995).

    Google Scholar 

  46. O. G. Vendik, S. P. Zubko, and M. A. Nikol'sky, Modeling of the capacity of a planar capacitor containing a thin ferroelectric layer, Zh. Tech. Fiz. 69(4), 1–7 (1999) [Tech. Phys. 44(4), 1–5 (1999).

    Google Scholar 

  47. O. G. Vendik and L. T. Ter-Martirosyan, Size effect in layered structures: Ferroelectric/normal metal and ferroelectric/high-T c superconductor, Fiz. Tverd. Tela (St. Petersburg) 36(11), 3343–3351 (1994) [Phys. Solid State 36(11), 1778–1781 (1994).

    Google Scholar 

  48. S. Kawakami, Loss-less reciprocal transmission and synthesis of two state network, IEEE Trans. ST 13, 128–138 (1966).

    Google Scholar 

  49. G. S. Khizha, I. B. Vendik, and E. A. Serebryakova, Microwave Phase Shifters Based on p-i-n-Diodes (in Russian) (Publish. House “Radio i Svyas,” Moscow 1984).

    Google Scholar 

  50. I. V. Barsky, O. G. Vendik, and G. S. Khizha, Figure of merit and quality parameter of microwave controllable devices based on semiconductor and ferroelectric components, Proc. of Leningrad Electrotechnical Institute (Leningrad) 375, 3–9 (1986).

    Google Scholar 

  51. R. E. Collin, Foundation for Microwave Engineering, McGraw-Hill International Edition, 1992).

  52. K. C. Gupta, R. Garg, and R. Chadha, Computer Aided Design of Microwave Circuits (Artech House, Inc. 1981).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vendik, O.G., Hollmann, E.K., Kozyrev, A.B. et al. Ferroelectric Tuning of Planar and Bulk Microwave Devices. Journal of Superconductivity 12, 325–338 (1999). https://doi.org/10.1023/A:1007797131173

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007797131173

Navigation