Skip to main content
Log in

A Comparison Theorem on Moment Inequalities Between Negatively Associated and Independent Random Variables

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

Let {X i, 1≤in} be a negatively associated sequence, and let {X* i , 1≤in} be a sequence of independent random variables such that X* i and X i have the same distribution for each i=1, 2,..., n. It is shown in this paper that Ef(∑n i=1 X i)≤Ef(∑n i=1 X* i ) for any convex function f on R 1 and that Ef(max1≤kn n i=k X i)≤Ef(max1≤kn k i=1 X* i ) for any increasing convex function. Hence, most of the well-known inequalities, such as the Rosenthal maximal inequality and the Kolmogorov exponential inequality, remain true for negatively associated random variables. In particular, the comparison theorem on moment inequalities between negatively associated and independent random variables extends the Hoeffding inequality on the probability bounds for the sum of a random sample without replacement from a finite population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Alam, K., and Saxena, K. M. L. Positive dependence in multivariate distributions. Comm. Statist. A 10, 1183-1196.

  2. Barbour, A. D., Holst, L., and Janson, S. (1992). Poisson Approximation, Oxford University Press.

  3. Baum, L. E., and Katz, M. (1965). Convergence rate in the law of large numbers. Trans. Amer. Math. Soc. 120, 108-123.

    Google Scholar 

  4. Billingsley, P. (1968). Convergence of Probability Measures, John Wiley, New York.

    Google Scholar 

  5. Birkel, T. (1988). Moment bounds for associated sequences. Ann. Probab. 16, 1184-1193.

    Google Scholar 

  6. Block, H. W., Savits, T. H., and Shaked, M. (1982). Some concepts of negative dependence. Ann. Probab. 10, 765-772.

    Google Scholar 

  7. Block, H. W., Savits, T. H., and Shaked, M. (1985). A concept of negative dependence using stochastic ordering. Statist. Probab. Lett. 3, 81-86.

    Google Scholar 

  8. Choi, K. P., and Klass, M. J. (1997). Some best possible prophet inequalities for convex functions of sums of independent variates and unordered martingale difference sequences. Ann. Probab. 25, 803-811.

    Google Scholar 

  9. Csörgö, M., Horváth, L., and Shao, Q. M. (1993). Convergence of integrals of uniform empirical and quantile processes. Stochastic Process. Appl. 45, 283-294.

    Google Scholar 

  10. Ebrahimi, N., and Ghosh, M. (1981). Multivariate negative dependence. Comm. Statist. A 10, 307-337.

    Google Scholar 

  11. Hoeffding, W. (1963). Probability inequalities for sums of bounded random variables. J. Amer. Statist. Assoc. 58, 13-30.

    Google Scholar 

  12. Hsu, P. L., and Robbins, H. (1947). Complete convergence and the law of large numbers. Proc. Nat. Acad. Sci. U.S.A. 33, 25-31.

    Google Scholar 

  13. Jogdeo, K., and Patil, G. P. (1975). Probability inequalities for certain multivariate discrete distributions. SankhyäB 37, 158-164.

    Google Scholar 

  14. Johnson, W. B., Schechtman, G., and Zinn, J. (1985). Best constants in moment inequalities for linear combinations of independent and exchangeable random variables. Ann. Probab. 13, 234-253.

    Google Scholar 

  15. Joag-Dev, K., and Proschan, F. (1983). Negative association of random variables with applications. Ann. Statist. 11, 286-295.

    Google Scholar 

  16. Karlin, S., and Rinott, Y. (1980). Classes of orderings of measures and related correlation inequalities. Il. Multivariate reverse rule distributions. J. Multivar. Anal. 10, 499-516.

    Google Scholar 

  17. Lehmann, E. L. (1966). Some concepts of dependence. Ann. Math. Statist. 43, 1137-1153.

    Google Scholar 

  18. Matula, P. (1992). A note on the almost sure convergence of sums of negatively dependent random variables. Statist. Probab. Lett. 15, 209-213.

    Google Scholar 

  19. Newman, C. M. (1980). Normal fluctuations and the FKG systems. Comm. Math. Phys. 74, 119-128.

    Google Scholar 

  20. Newman, C. M. (1984). Asymptotic independence and limit theorems for positively and negatively dependent random variables. In Y. L. Tong (ed.), Inequalities in Statistics and Probability, Institute of Mathematical Statistics, Hayward, CA, pp. 127-140.

    Google Scholar 

  21. Newman, C. M., and Wright, A. L. (1981). An invariance principle for certain dependent sequences. Ann. Probab. 9, 671-675.

    Google Scholar 

  22. Roberts, A. W., and Verberg, D. E. (1973). Convex Functions, Academic Press, New York.

    Google Scholar 

  23. Rosenthal, H. P. (1970). On the subspaces of Lp( p>2) spanned by sequence of independent random variables. Israel J. Math. 8, 273-303.

    Google Scholar 

  24. Shao, Q. M., and Su, C. (1999). The law of the iterated logarithm for negatively associated random variables. Stoch. Process. 83, 139-148.

    Google Scholar 

  25. Shao, Q. M., and Yu, H. (1996). Weak convergence for weighted empirical processes of dependent sequences. Ann. Probab. 24, 2098-2127.

    Google Scholar 

  26. Stout, W. F. (1974). Almost Sure Convergence, Academic Press, New York.

    Google Scholar 

  27. Su, C., and Wang, Y. B. (1995). A moment inequality of negatively associated sequence with its applications, Manuscript.

  28. Su, C., Zhao, L. C., and Wang, Y. B. (1997). Moment inequalities and weak convergence for negatively associated sequences, Science in China (A) 40, 172-182.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shao, QM. A Comparison Theorem on Moment Inequalities Between Negatively Associated and Independent Random Variables. Journal of Theoretical Probability 13, 343–356 (2000). https://doi.org/10.1023/A:1007849609234

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007849609234

Navigation