Skip to main content
Log in

Continuity of the Multifractal Spectrum of a Random Statistically Self-Similar Measure

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

Until now [see Kahane;(19) Holley and Waymire;(16) Falconer;(14) Olsen;(29) Molchan;(28) Arbeiter and Patzschke;(1) and Barral(3)] one determines the multifractal spectrum of a statistically self-similar positive measure of the type introduced, in particular by Mandelbrot,(26, 27) only in the following way: let μ be such a measure, for example on the boundary of a c-ary tree equipped with the standard ultrametric distance; for α≥0, denote by E α the set of the points where μ possesses a local Hölder exponent equal to α, and dim E α the Hausdorff dimension of E α; then, there exists a deterministic open interval I\(\mathbb{R}\)*+ and a function f: I\(\mathbb{R}\)*+ such that for all α in I, with probability one, dim E α=f(α). This statement is not completely satisfactory. Indeed, the main result in this paper is: with probability one, for all αI, dim E α=f(α). This holds also for a new type of statistically self-similar measures deduced from a result recently obtained by Liu.(22) We also study another problem left open in the previous works on the subject: if α=inf(I) or α=sup(I), one does not know whether E α is empty or not. Under suitable assumptions, we show that E α≠ø and calculate dim E α.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Arbeiter, M., and Patzschke N. (1996). Random self-similar multifractals. Math. Nachr. 181, 5–42.

    Google Scholar 

  2. Barral, J. (1997). Continuité, moments d'ordres négatifs, et analyse multifractale des cascades multiplicatives de Mandelbrot, Thése, Université Paris-Sud, No. d'ordre 4704.

  3. Barral, J. (1999). Moments, continuité et analyse multifractale des martingales de Mandelbrot. Prob. Th. Rel. Fields 113, 535–569.

    Google Scholar 

  4. Ben Nasr, F. (1987). Mesures aléatoires associées à des substitutions. C. R. Acad. Sci. Paris 304, 255–258.

    Google Scholar 

  5. Biggins, J. D. (1992). Uniform convergence of martingales in the branching random walk. Ann. Prob. 20, 137–151.

    Google Scholar 

  6. Billingsley, P. (1965). Ergodic Theory and Information, John Wiley, New York, pp. 136–145.

    Google Scholar 

  7. Brown, G., Michon, G., and Peyrière, J. (1992). On the multifractal analysis of measures. J. Stat. Phys. 66(3–4), 775–790.

    Google Scholar 

  8. Cawley, R., and Mauldin, R. D. (1992). Multifractal decomposition of Moran fractals. Adv. Math. 92, 196–236.

    Google Scholar 

  9. Cole, J. (1998). Relative multifractal analysis, University of St. Andrews, Preprint.

  10. Collet, J., and Koukiou, F. (1992). Large deviations for multiplicative chaos. Commun Math. Phys. 147, 329–342.

    Google Scholar 

  11. Durrett, R., and Liggett, Th. (1983). Fixed points of the smoothing transformation. Z. Wahrsch. verw. Gebiete 64, 275–301.

    Google Scholar 

  12. Edgar, G. A., and Mauldin, R. D. (1992). Multifractal decomposition of digraph recursive fractals. Proc. London Math. Soc. 65, 604–628.

    Google Scholar 

  13. Falconer, K. J. (1990). Fractal Geometry—Mathematical Foundations and Application, John Wiley.

  14. Falconer, K. J. (1994). The multifractal spectrum of statistically self-similar measures. J. Theor. Prob. 7, 681–702.

    Google Scholar 

  15. Guivarc'h, Y. (1990). Sur une extension de la notion de loi semi-stable. Ann. Inst. H. Poincaré, Probab. et Statist. 26, 261–285.

    Google Scholar 

  16. Holley R., and Waymire, E. C. (1992). Multifractal dimensions and scaling exponents for strongly bounded random cascades. Ann. Appl. Prob. 2, 819–845.

    Google Scholar 

  17. Kahane, J.-P. (1974). Sur le modèle de turbulence de Benoît Mandelbrot. C. R. Acad. Sci. Paris 278, 621–623.

    Google Scholar 

  18. Kahane, J.-P. (1987). Multiplications aléatoires et dimensions de Hausdorff. Ann. Inst. H. Poincaré, Sup. au No 2, 23, 289–296.

    Google Scholar 

  19. Kahane, J.-P. (1991). Produits de poids aléatoires et indépendants et applications. In Bélair, J., and Dubuc, S. (eds.), Fractal Geometry and Analysis, pp. 277–324.

  20. Kahane, J.-P., and Peyrière, J. (1976). Sur certaines martingales de Benoît Mandelbrot. Adv. Math. 22, 131–145.

    Google Scholar 

  21. Liu, Q. (1997a). Multiplicative cascades and the branching random walk: Asymptotic properties and absolute continuity. Personnal communication.

  22. Liu, Q. (1997b). Self-similar cascades and the branching random walk, University Rennes, Preprint.

  23. Liu, Q. (1997c). Sur une équation fonctionnelle et ses applications: une extension du théorème de Kesten-Stigum concernant des processus de branchement. Adv. Appl. Prob. 29(2), 353–373.

    Google Scholar 

  24. Liu, Q. (1998). Fixed points of a generalized smoothing transformation and applications to branching processes. Adv. Appl. Prob. 30(1), 85–112.

    Google Scholar 

  25. Liu, Q. (1998). On a distributional equation arising in multiplicative cascades and branching random walks: Asymptotic behavior and absolute continuity, University Rennes, Preprint.

  26. Mandelbrot, B. (1974a). Intermittent turbulence in self-similar cascades: Divergence of hight moments and dimension of the carrier. J. fluid. Mech. 62, 331–358.

    Google Scholar 

  27. Mandelbrot, B. (1974b). Multiplications aléatoires itérées et distributions invariantes par moyennes pondérées. C. R. Acad. Sci. Paris 278, 289–292; 355–358.

    Google Scholar 

  28. Molchan, G. M. (1996). Scaling exponents and multifractal dimensions for independent random cascades. Commun. Math. Phys. 179, 681–702.

    Google Scholar 

  29. Olsen, L. (1994). Random geometrically graph directed self-similar multifractals. Pitman Res. Notes Math. Ser. 307.

  30. Olsen, L. (1995). A multifractal formalism. Adv. Math. 116, 92–195.

    Google Scholar 

  31. Peyrière, J. (1974). Turbulence et dimension de Hausdorff. C. R. Acad. Sci. Paris 278, 567–569.

    Google Scholar 

  32. Peyrière, J. (1977). Calculs de dimensions de Hausdorff. Duke Math. J. 44(3), 591–601.

    Google Scholar 

  33. Peyrière, J. (1979). A singular random measure generated by splitting [0, 1]. Z. Wahrsch. verw. Gebiete 47, 289–297.

    Google Scholar 

  34. Von Bahr, B., and Esseen, C.-G. (1965). Inequalities for the rth absolute moment of sum of random variables. 1 ⩽ r ⩽ 2. Ann. Math. Statist. 36, 299–303.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barral, J. Continuity of the Multifractal Spectrum of a Random Statistically Self-Similar Measure. Journal of Theoretical Probability 13, 1027–1060 (2000). https://doi.org/10.1023/A:1007866024819

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007866024819

Navigation